FIRST SEMESTER B.C.A. DEGREE EXAMINATION, NOVEMBER 2019

 (Supplementary/Improvement)(CUCBCSS-UG)
CC15U BCA1 C02/CC17U BCA1 C02 - DISCRETE MATHEMATICS
(Mathematics - Complementary Course)
(2015 to 2018 Admissions)
Time: Three Hours

PART A

Answer all questions. Each question carries 1 mark

1. Write the power ste of $\mathrm{A}=\{5,6,7\}$
2. Define proposition.
3. State De-Morgan's law.
4. Define poset.
5. Define degree of a vertex
6. Draw the undirected graph of K_{5}
. Define spanning tree.
7. Define height of a tree.
8. Which are the two Kuratowski's graph?
9. Given $\mathrm{P}=\{2,3,4,5,6\}$, state the truth value of the statement $(\exists x \in P)(x+3=10)$
(10×1 = 10 Marks)

PART B

Answer all questions. Each question carries 2 marks
11. Construct truth table for $(p \rightarrow q) \rightarrow(p \wedge q)$
12. Define greatest lower bound and least upper bound of a subset of poset (P, \leq)
13. Define walks and paths in a graph. Differentiate between them
14. Define centre of a tree.
15. Explain directed graphs. Which are the two types of degrees of vertices exist in a directed graph?

PART C

Answer any five questions. Each question carries 4 marks.

16. Enumerate various types of sets. Give examples for each set.
17. Explain travelling salesman problem.
18. Explain the two types of connectivity in a graph. What is a seperable graph?
19. Define the quantifiers used in predicate calculus with examples.
20. Draw the undirected graph represented by adjacency matrix M_{A} shown below

$$
M_{A}=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

21. Draw all the spanning trees of the graph G shown below

G

22. Define a connected graph and disconnected graph with examples
23. Prove the following identity using Boolean algebra $A(\bar{A}+C)(\bar{A} B+\bar{C})=0$

Answer any five questions. Each question carries 8 marks.
24. Prove $((p \vee q) \wedge \neg(\neg p \wedge(\neg q \vee \neg r))) \vee(\neg p \wedge \neg q) \vee(\neg p \wedge \neg r)$ is a tautology.
25. Which of the following simple graphs have a Hamiltonian circuit or, if not, a Hamiltonian path?

(5 x $4=20$ Marks)

PART D

26. Find a minimum spanning tree of the labeled connected graph G shown below using prims algorithm.

G

27. Define
a) Adjacency matrix
b) Incidence matrix of a graph with examples.
28. Consider the directed graph as shown in figure. Show the four different subgraphs of this graph having atleast four vertices.

29. (a) Show that $p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$.
(b) Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{R}=\{(1,1),(1,3),(2,2),(2,4),(3,1),(3,3),(4,2),(4,4)\}$. Is it an equivalence relation?
30. Discuss about relations and their properties.
31. Prove
a) Involution law.
b) Identity law.
c) Absorption law.
d) Idempotent law.

