90915		(Pages: 4	1)	Name61
No. What i		at the life import		Reg. No
FIFTE	SEMESTER B.S.	DEGREE E	EXAMINA	TION, NOVEMBER 2015
	s slew rote + On sile - Le	(UG—CCS	SS)	(c) Precision resistors
		Core Course-	Physics	
	PH 5B 12—ELE	CTRONICS (Al	NALOG A	ND DIGITAL) .
		2009—2012 Adı	missions)	
= : Three F	lours	51 W time using		Maximum 30 Weight a c
		Part A		
	Au	Answer all que		tagrovouit.
		question carries		
			d.c. current	rating of 2A. This means the d.c. load
current	can have a maximum v			
(a)	1A.	(b)	2A.	
(c)	4A.	(d)	8A.	
2. A Zene	r diode :			
(a)	Is a battery.			(c) Using 10'S compleme
(b)	Is a rectifier diode.	3 170		
(c)	Has a constant voltage in the breakdown region.			
(d)	Is forward biased.			
1 In a tr	ansistor the collector dio	de has to be:		
(a)	Forward biased.	(b)	Reverse bi	
(c)	Non-conducting.	(b)	None of th	nese.
(0)	Tion-conducting.	La Calle a sel ul an a		

(b) 0.7V

(d) Cut-off point.

(c) 0V. (d) High voltage.

Three different Q points are shown on a load line. The upper Q point given the:

(a) Minimum current gain. (b) Intermediate current gain.

The base- emitter voltage of an ideal transistor is:

(a) 0.3V.

(c) Maximum current gain.

6: Voltage divider bias needs:		
(a) Only three resistors.	(b)	Only one supply.
(c)- Precision resistors.	(d)	Active devices.
7. The input impedence of a JFET:		
(a) Approaches zero.	(b)	Approaches one.
(c) Approaches infinity.	(d)	Impossible to predict.
8. The coupling circuit in an oscillator is:		
(a). Lag circuit.	(b)	Lead circuit.
(c) Lead-lag circuit.	(d)	Resonant circuit.
9. Each 4 bit binary group is called:		
(a) Bit.	(b)	Nibble.
(c) Byte.	(d)	Word.
10. In a digital computer binary subtraction	is perf	ormed using:
(a) Using 2'S complement method.	(b)	i to the
(c) Using 10'S complement method.	(d)	None of these.
11. An AND gate can be imagined as:		
(a) Switches connected in series.	(b)	Switches connected in parallel.
(c) Transistors connected in series.	(d)	Transistors connected in paralle
12. K- map is used:		
(a) To minimize the number of flip	flops i	n a digital circuit.
(b) To minimize the number of gate		
(c) To minimize the number of gat	es and	the fan in requirements.
(d) To design gates		

 $(12 \times \frac{1}{4} =$

Part B

Answer all questions
Each question carries 1 weightage.

- 13. What is ripple factor? On what factors does it depend.
- 14. What property of the transistor is used in the process of amplification? Explain.

- 15. What is negative feedback? What are its important characteristics?
- 16. What is amplitude modulation? Where is it used?
- 17. What is slew rate? On what factors does it depend?
- 18. Distinguish between LC and RC oscillators.
- 19. Why is the binary number used in digital systems?
- 20. Explain the sign magnitude representation of numbers
- 21. Explain how voltage stabilization is done using a Zener diode.

 $(9 \times 1 = 9 \text{ weightage})$

Part C

Answer any five questions.

Each question carries 2 weightage.

- Draw and explain the common emitter characteristics of an NPN transistor. Draw the load line and define quiescent point.
- 3. Explain voltage- divider bias. For the circuit given below calculate IC, IE, VCE and Q point.

- What sis frequency modulation? Where is it used? Compare it with AM.
- What is demodulation? How is demodulation achieved using a straight receiver.
- Distinguish between Inverting and Non-inverting amplifiers using figures.
- Discuss 1's and 2's complement methods of subtraction
- State and prove Demorgains theorem.

 $(5 \times 2 = 10 \text{ weightage})$

Turn over

Part D

Answer any two questions. Each question carries 4 weightage.

- 29. Describe the working of RC coupled amplifier. Using the a.c. equivalent circuit obtain an expression for the amplification. Draw the frequency response and define band width.
- 30. Describe the construction and working of an RC phase-shift oscillator. Obtain the expression frequency. Design a phase-shift oscillator to have a frequency of 1 kHz.
- 31. (a) What is the necessity to reduce Boolean expression. Give the procedure to reduce Bool expression.
 - (b) What are universal gates? Explain the working of NAND and NOR gates as universal ga
- 32. Explain the working of a fullwave rectifier. What are filter circuits? Explain its how it affects output of rectifier curcuits.

 (2 × 4 = 8 weight