
Stress detection in IT professional
by image processing and machine

learning
PROJECT REPORT

Submitted By

DONA MARIYA DAVIES

Reg. No. CCAWMCS001

For the award of the Degree of

Master of Science

in Computer Science
(University of Calicut)

under the guidance of

Ms. Viji Viswanathan

Assistant Professor

M.Sc in COMPUTER SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

CHRIST COLLEGE (AUTONOMOUS)
IRINJALAKUDA, KERALA

2022-2024

ACKNOWLEDGMENT

Submitting my project in the divine feet of Almighty God.I would like to take this opportunity
to express my profound gratitude to all the people who have inspired and motivated to take this
project success.

I would like to thank our principal Rev.Fr.Dr. Jolly Andrews CMI, for proper ambience to
go on with the project. I take these opportunities to acknowledge my thanks to Ms Sini Thomas,
Head of the Department of Computer Science for valuable guidance in developing this project.
I’ am also thankful to my Project Guide Ms Viji Viswanathan, and all other staff in Department
of Computer Science for their immense support

My sincere thanks to all those well wishers and friends who have helped me during the course
of the project work and have been making it a great success. Last but not least, I wish to express
my thankfulness to my family members for their excellent support and co-ordination.

Date : DONA MARIYA DAVIES

Declaration

I hereby declare that the project entitled “Stress detection in IT professional by image
processing and machine learning” submitted to Calicut university, on partial fulfillment of
the requirement for the award of degree in Master of Science in Computer Science is a record of
original work done by me, under the guidance of Ms Viji Viswanathan , Assistant Professor in
Department of Computer Science, Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Name: DONA MARIYA DAVIES

Date : RegNo: CCAWMCS001

DEPARTMENT OF COMPUTER SCIENCE

Christ College(Autonomous)

Irinjalakuda

CERTIFICATE

Certified that this thesis entitled ’Stress detection in IT professional by image pro-
cessing and machine learning’ submitted by “’DONA MARIYA DAVIES (Reg. No.
CCAWMCS001)” in partial fulfillment for the award of the degree of Master of Science in
Computer Science under University of Calicut during the year 2022-2024, is the bonafide work
carried out by her under my guidance and supervision.

Ms Viji Viswanathan Ms. Sini Thomas
Assistant Professor, CSE Head of the Department

Internal Guide Computer Science

EXTERNAL EXAMINER INTERNAL EXAMINER

Abstract

Detecting stress in the IT professionals with the help of Machine learning and Image processing
techniques is an upgraded version of the old stress detection systems which excluded the live
detection and the personal counseling but this paper comprises of live detection and periodic
analysis of employees and detecting physical as well as mental stress levels in his/her by providing
them with proper remedies for managing stress by providing survey form periodically. This paper
mainly focuses on managing stress and making the working environment healthy and spontaneous
for the employees and to get the best out of them during working hours.

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Project Profile . 1
1.3 Contributions . 1

2 Problem Definition and Methodology 2
2.1 Problem definition . 2
2.2 Objectives . 2
2.3 Motivation . 2
2.4 Methodology . 2
2.5 Scope . 2

3 Requirement Analysis and Specification 3
3.1 Requirement Analysis . 3
3.2 Existing System . 3
3.3 Proposed System . 3
3.4 Requirement Specification . 4

3.4.1 Functional Requirements . 4
3.4.2 Non-Functional Requirements . 4

3.5 Feasibility Study . 4
3.5.1 Technical Feasibility . 4
3.5.2 Economical Feasibility . 5
3.5.3 Operational feasibility . 5

3.6 Software Requirement Specification . 5
3.6.1 Introduction . 5
3.6.2 Overall Description . 6
3.6.3 Design and Implementation Constraints 6
3.6.4 Assumptions and Dependencies . 6
3.6.5 External Interface Requirements . 6
3.6.6 System Features . 7
3.6.7 Other Nonfunctional Requirements . 7

4 System Design 8
4.1 Users of the System . 8
4.2 Modularity criteria . 8
4.3 Design Methodologies . 8
4.4 User Interface Layouts . 9

5 Implementation 10
5.1 Tools/Scripts for Implementation . 10

5.1.1 Python . 10
5.2 Module hierarchy . 10
5.3 Coding . 10
5.4 Problems Encountered . 10

6 Testing And Implementation 12
6.1 Test Plans . 12
6.2 Unit testing . 12
6.3 Integration testing . 12
6.4 System testing . 12
6.5 Implementation . 12

7 Results 13

8 Conclusion and Future Works 15
8.1 Conclusion . 15
8.2 Future Enhancement . 15

9 Bibliography 16

Appendix 17

A User Interface 17

B Code 19

List of Figures

1 HEARTBEAT SENSOR . 9
2 User Interface . 17
3 Stress Detection 1 . 17
4 Stress Detection 2 . 18

INTRODUCTION

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

Chapter 1

1 Introduction

1.1 Overview

Stress management systems play a major role to notice the stress levels that disrupts our socio-
economic mode. As World Health Organization (WHO) says, Stress may be a psychological state
drawback moving the lifetime of one in four voters. Human stress results in mental furthermore
as socio-fiscal issues, lack of transparency in work, poor operating relationship, depression and
eventually commitment of suicide in severe cases. This demands counselling to be provided for
the stressed people cope up against stress. Stress turning away is not possible however pre-
ventive actions helps to beat the stress. Currently, solely medical and physiological consultants
will verify whether or not one is beneath depressed state (stressed) or not. one in every of the
normal methodology to notice stress is predicated on form. This methodology, utterly depends
on the answers given by the people, folks are going to be unsteady to mention whether or not
they square measure stressed or traditional. Automatic detection of stress minimizes the chance
of health problems and enhance the welfare of the society. This covers the manner for the need
of a scientific tool, that uses physiological signals thereby automating the detection of stress
levels in people. Stress detection is mentioned in varied literatures because it may be a vital
social contribution that enhances the approach to life of people. Nowadays because IT industries
square measure setting a replacement peek within the market by transferal new technologies and
merchandise within the market. during this study, the stress levels in staff also are noticed to
lift the bar high. Although their square measure several organizations United Nations agency
give psychological state connected schemes for his or her staff however the problem is much from
management. during this paper we have a tendency to try and go into the depth of this draw-
back by making an attempt to notice the stress patterns within the operating worker within
the corporations we might prefer to apply image process and machine learning techniques to
research stress patterns and to slim down the factors that powerfully verify the stress levels.
Machine Learning algorithms like KNN classifiers square measure applied to classify stress. Im-
age process is employed at the initial stage for detection, the employee’s image is clicked by the
camera that is input. so as to urge associate degree increased image or to extract some helpful
info from its image process is employed by changing image into digital type and play acting some
operations on that. By taking input as a picture from video frames and output is also image or
characteristics related to that image.

1.2 Project Profile

Title : Stress detection in IT professional by image processing and machine learning

Domain : Deep Learning

Language : Python

Version : 3.10.0

1.3 Contributions

The major contributions of this system are:

� The system detects stress in IT professionals using machine learning and image processing
techniques, providing live detection and periodic analysis of employees’ physical and men-
tal stress levels.

Christ College (Autonomous), Irinjalakuda 1

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

� The system employs a non-intrusive and real-time approach to detect stress by analyzing
facial expressions in captured videos and also through a heart rate sensor. It uses image
processing and machine learning techniques to analyze emotional status and make deci-
sions on stress levels.

Christ College (Autonomous), Irinjalakuda 2

PROBLEM DEFINITION
AND

METHODOLOGY

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

Chapter 2

2 Problem Definition and Methodology

2.1 Problem definition

Stress is a complicated psychological and physiological condition that differs greatly from per-
son to person. What stresses one person out could not stress another out. It is challenging to
precisely define and identify stress in a variety of individuals due to its subjectivity.It can be
challenging to recognize faces at times.Natural variations in heart rate can occur over the day
as a result of things like physical activity, coffee intake, and mental states unrelated to stress. It
might be difficult to distinguish between heart rate variations that are typical and those brought
on by stress.

2.2 Objectives

The main highlight of this is to propose a reliable, convenient, and accurate stress detection
system for IT professionals. It aims to monitor the emotional status of individuals working in
front of a computer for longer durations and detect and reduce stress levels.

2.3 Motivation

Stress management systems, utilizing heartbeat sensors and image processing, aim to detect and
manage stress levels in IT professionals, thereby improving productivity and preventing health
problems, thus enhancing societal welfare.Detecting stress is in such a way:

� Recognise facial emotion

� Heart beat sensor

� Susceptibility to detection

2.4 Methodology

The study uses image processing and machine learning techniques to analyze stress patterns in
IT professionals. It uses image acquisition tools and KNN classifiers to classify stress levels. The
system captures images and records heartbeats, aiming to monitor emotional status and provide
solutions to reduce stress and create a comfortable workplace.

2.5 Scope

Stress detection in machine learning involves analyzing physiological signals (e.g., heart rate,facial
emotion) and behavioral data to infer stress levels. It has applications in healthcare, wearable
devices, and stress management tools, aiming to provide real-time insights for users’ well-being
and performance optimization. Advancements in algorithms, sensor technologies, and data fu-
sion techniques are expanding its scope for personalized interventions and preventive healthcare
measures.

Christ College (Autonomous), Irinjalakuda 2

REQUIREMENT ANALYSIS

AND
SPECIFICATION

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

Chapter 3

3 Requirement Analysis and Specification

3.1 Requirement Analysis

Stress detection in machine learning involves analyzing physiological signals (e.g., heart rate,facial
emotion) and behavioral data to infer stress levels. It has applications in healthcare, wearable
devices, and stress management tools, aiming to provide real-time insights for users’ well-being
and performance optimization. Advancements in algorithms, sensor technologies, and data fu-
sion techniques are expanding its scope for personalized interventions and preventive healthcare
measures.

3.2 Existing System

Existing system is developed for stress detection based on the study of the facial expression.
The system is nonintrusive and is able to run in real-time. This system consists some Image
Processing and Machine Learning Techniques. And the other work on this issue is based on
various physical signals and visual features to monitor the stress in a person while he is working.
However, these measurements are invasive and are less comfortable in real application. Every
sensor data is compared with a stress index which is a threshold value used for detecting stress.

3.3 Proposed System

Stress detection system based on the analysis of the facial expression. The system works when
the IT professional will be seat in the front of camera then it will be able to detect the facial
expression and run in real-time. A camera is used to capture the near front sight of the employee
while he is working in front of the computer. Captured video is divided into sections of equivalent
length and set of similar number of image frames are extracted from each part correspondingly
and are examined. The image detection includes the calculation of the variation in the place of
the eyebrow from its mean position. The displacement of eyebrow from its place is considered
by examining the image for the eyebrow co-ordinates. If the employee is found stressed in
the successive sections of time intervals which was previously divided, the decision for stress
detection is formed for a employee working in front of computer with the obtained results it
employs the technique of deep learning. The stress detection module scans the binary image
from the extreme left top to record the coordinates of the eyebrow. The stress detection module
scans the binary image from the extreme left top to record the coordinates of the eyebrow. The
offline displacement calculation sub-module calculates the shifting of eyebrow using the obtained
eyebrow co-ordinates which is subsequently followed by variance calculation of the displacement.
The classifier sub-module is trained offline are employed to determine the presence of emotion.
The integrated decision of individual frames eventually determines the level of stress involved.

� Accuracy -The accuracy of the present system can be improved.

� Model loss - the loss of the system can be reduced.

� Computation time - The computation time can be reduced and can be made.

Christ College (Autonomous), Irinjalakuda 3

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

3.4 Requirement Specification

3.4.1 Functional Requirements

In software engineering and system engineering, functional demand defines function of a system
and its factors. A function is described as a set of inputs, the geste and labors. Functional con-
ditions may be computations, specialized details, data manipulation and processing and other
specific functionality that define what a system is supposed to negotiate. Behavioral conditions
describing all the cases where the system uses the functional conditions are captured in use cases.
Functional conditions are supported by non-functional conditions also known as quality condi-
tions, which put constraints on the design or perpetration (similar as performance conditions,
security, or trustability). Generally, functional conditions are expressed in the form ” system
must do demand ”, whilenon-functional conditions are ” system shall be demand ”. The plan
for enforcing functional conditions is detailed in the system design. The plan for enforcing non-
functional conditions is detailed in the system armature. As defined in conditions engineering,
functional conditions spec ify particular results of a system. This should be varied with inoper-
ative conditions which specify overall characteristics similar as cost and trustability. Functional
conditions drive the operation armature of a system, whilenon-functional conditions drive the
specialized armature of a system. This system does:

Stress detection in machine learning involves analyzing physiological signals (e.g., heart rate,
facial emotion) and behavioral data to infer stress levels

3.4.2 Non-Functional Requirements

In systems engineering and requirements engineering, a non-functional requirement (NFR) is a
requirement that specifies criteria that can be used to judge the operation of a system, rather
than specific behaviors. They are contrasted with functional requirements that define specific
behavior or functions. The plan for implementing functional requirements is detailed in the
system design. The plan for implementing nonfunctional requirements is detailed in the system
architecture, because they are usually Architecturally Significant Requirements. Broadly, func-
tional requirements define what a system is supposed to do and non-functional requirements
define how a system is supposed to be. Functional requirements are usually in the form of
”system shall do requirement”, an individual action or part of the system, perhaps explicitly
in the sense of a mathematical function, a black box description input, output, process and
control functional model or IPO Model. In contrast, non-functional requirements are in the
form of ”system shall be requirement”, an overall property of the system as a whole or of a
particular aspect and not a specific function. The system’s overall properties commonly mark
the difference between whether the development project has succeeded or failed. Non-functional
requirements are often called ”quality attributes” of a system. Other terms for non-functional
requirements are ”qualities”, ”quality goals”, ”quality of service requirements”, ”constraints”
and ”non-behavioral requirements”.. Qualities—that is non-functional requirements—can be
divided into two main categories: Execution qualities, such as safety, security and usability,
which are observable during operation (at run time). Evolution qualities, such as testability,
maintainability, extensibility and scalability, which are embodied in the static structure of the
system.

3.5 Feasibility Study

3.5.1 Technical Feasibility

Technical feasibility assesses the current resources (hardware and software) and technologies,
which are required to accomplish user requirements. It requires a computer with python ana-
conda installed. Today every organization has computer, so it is not an extra cost.

Christ College (Autonomous), Irinjalakuda 4

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

3.5.2 Economical Feasibility

Economic feasibility is the most frequently used method for evaluating the effectiveness of pro-
posed system.The proposed model is cost effective.

3.5.3 Operational feasibility

The combined approach of machine learning and Image capturing provide better security and
confidentiality to the data.

3.6 Software Requirement Specification

3.6.1 Introduction

Purpose

The stress detection system monitors IT professionals’ emotional state, reducing stress levels.
Utilizing image processing and machine learning, it analyzes stress patterns and identifies stress-
determining factors. The system offers preventative solutions, including live stress detection,
and remedies, aiming to improve IT professionals’ well-being and productivity

Document Conventions

� All terms are in Times New Roman style.

� Main features or important terms are in bold.

� Use LateX for documentation.

Intended Audience and Reading Suggestions

Anyone with some programming experience, with familiarity in Python and Deep learning, can
understand this document.The document is intended for developers, software architects, testers,
project managers and documentation writers. This Software Requirement Specification also in-
cludes:

� Overall description of the product

� External interface requirements

� System Features

� Other nonfunctional requirements

Product Scope

The stress detection system uses image processing and machine learning techniques to moni-
tor stress levels in IT professionals. It captures images of employees and analyzes them regularly
to identify physical and mental stress levels. The system uses machine learning algorithms like
KNN classifiers to classify stress levels. The goal is to create a comfortable, healthy workplace
environment, manage stress, and provide preventative solutions to improve the overall well-being
and productivity of IT professionals during working hours.

IEEE Standard 830-1998 Recommended Practice for Software Requirements Specifications.

Christ College (Autonomous), Irinjalakuda 5

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

3.6.2 Overall Description

Product Perspective

The stress detection system for IT professionals has been upgraded to include live detection
and personal counseling. It uses image processing and machine learning techniques to analyze
stress patterns and identify factors determining stress levels. The system monitors the emo-
tional status of IT professionals working long hours in front of a computer, aiming to create a
comfortable workplace environment. Regular images of employees are captured and analyzed
using machine learning algorithms like KNN classifiers. The system provides preventative stress
management solutions, aiming to improve overall well-being and productivity. The system aims
to reduce stress levels and create a healthy working environment.

Operating Environment

� Operating System: Windows 11

� Processor: Intel Core i3 / AMD Ryzen 3 or Higher

� Memory: 4GB or more

3.6.3 Design and Implementation Constraints

� Computational Complexity.

� Training time.

� Integration Challenges

3.6.4 Assumptions and Dependencies

Assumptions

The proposed approach assumes a dataset that encompasses a wide range of flower species and is
thoroughly annotated is readily accessible for training models. The efficacy of the model hinges
upon the inclusiveness and excellence of this dataset. A diverse and well-annotated dataset that
includes various flower species is at one’s disposal for the purpose of model training.

Dependencies

� Python

� CUDA and cuDNN (Optional)

3.6.5 External Interface Requirements

User Interfaces

The interface should maintain privacy and security standards, ensuring user data protection and
confidentiality throughout the stress detection and management process.The design facilitates
finishing the task at hand without drawing unnecessary attention to itself. Image processing and

Christ College (Autonomous), Irinjalakuda 6

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

machine learning are utilized to support its usability, influencing how the user performs certain
interactions and improving the aesthetic appeal of the design; design aesthetics may enhance or
detract from the ability of users to use the functions of the Interface.The design process must
balance technical functionality and visual elements (e.g., mental model) to create a system that
is not only operational but also usable and adaptable to changing user needs.

Hardware Interfaces

� Operating System: Windows or any other Platform

� Hardware: Intel Core i5

� Internet Connection

Software Interfaces

� Python

Communications Interfaces

Standard HTTP COMMUNICATION interface required for internet connection.

3.6.6 System Features

� The data detected by KNN Classifier, Deep Learning and image processing.
Utilizes the deep learning architecture pre-trained on ImageNet for effective feature ex-
traction and representation learning, enhancing the model’s ability to classify emotions.

� Transfer Learning:
Leverages transfer learning to fine-tune the Inception V3 model on a specific flower dataset,
benefiting from the knowledge learned during pre-training on ImageNet

� Functional Requirements
The computer vision data is sent to the deep learning model for obtaining the result. The
deep learning model will be compared with the extracted features of given data. And then
finally during the comparison will obtain the result whether data is hated or not hated
speech.

3.6.7 Other Nonfunctional Requirements

Performance Requirements

� Accuracy: The classification accuracy of the system must meet or exceed predefined stan-
dards, reflecting the model’s capability to correctly identify flower species. High accuracy
is crucial for the system’s reliability and utility in various applications.

� Resource Utilization: Efficient utilization of computational resources, including CPU,
GPU, or TPU, is necessary to ensure optimal performance during training and infer-
ence. The system should manage resource allocation effectively, avoiding bottlenecks or
overutilization.

� Training Time: The time required for model training should be within acceptable limits,
allowing for timely updates and improvements. Efficient training times are especially
important when retraining the model with new data or making enhancements.

� Compatibility: Should be compatible with a wide range of devices, operating systems and
platforms, to ensure its widespread adoption and use.

Christ College (Autonomous), Irinjalakuda 7

SYSTEM DESIGN

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

Chapter 4

4 System Design

4.1 Users of the System

User: The user who handles the System.

4.2 Modularity criteria

The proposed system has following modules :

� Data entered undergoes image processing and machine learning.

� Integration of different algorithms and tools, such as KNN classifiers, to classify stress
patterns based on analyzed images.

� 3. System to be adaptable to different environments and organizations, ensuring that it
can be customized and tailored to specific needs.

4.3 Design Methodologies

Image Pre-processing

Collecting a diverse dataset of images that can be used for flower image classification is cru-
cial. The images should be high quality and varied in content to test the robustness of the
proposed approach. The collected data should be preprocessed to remove any irrelevant or cor-
rupted data that could impact the performance of the approach. This can involve removing
noise, compression artifacts, and other types of image distortions. The data should be in a
format that is compatible with the proposed approach. Feature extraction is a critical step in
image processing, as it involves identifying and extracting the features of the image that can
provide valuable insights. This can involve identifying color palettes, pixel patterns, and other
features of an image. The preprocessing methods of resizing, normalization, and augmentation
are frequently used. By ensuring that every image has the same size, resizing makes it possible
to use constant input dimensions across the dataset. In order to aid in convergence during model
training, normalization is done to scale pixel values, usually to a specified range like [0, 1]. By
performing changes like rotation, zooming, and flipping to the original photos, augmentation
creates variations of the original images that enhance the model’s generalization abilities and
diversify the training dataset.Image preprocessing in fact plays a crucial role in optimizing the
input data quality, leading to more robust and accurate machine learning model performance in
image-related tasks.

HEARTBEAT SENSOR(MAX30102)

A digital pulse oximeter and heart rate sensor is an electronic device which can measure the
heart rate of a person by measuring the difference between oxygen rich and oxygen less blood.
Not only heart rate, this device can also measure the concentration of oxygen in blood. The
MAX30102 is a very versatile sensor and it can also measure body temperature other than heart
rate and blood oxygen level. This is a sensor designed by Analog Devices and features two LEDs
(one Infrared and one Red), a photodetector, optics, and low-noise signal processing unit to
detect pulse oximetry (SpO2) and heart rate (HR) signals. The main idea is that shine a single
LED at a time and check the amount of light that is getting reflected back to the sensor. Based
on the reflection it determines the blood oxygen level and heart rate.

Christ College (Autonomous), Irinjalakuda 8

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

Figure 1: HEARTBEAT SENSOR

K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is a powerful supervised machine learning algorithm used for clas-
sification and regression tasks. It finds the nearest data points to a query point using distance
metric like Euclidean distance, assigning the class label to the majority. In regression, KNN
calculates the average of these nearest data points to predict the continuous value associated
with the query point. Key features include simplicity, multi-class classification, and adaptability
to non-linear data. However, KNN can be computationally expensive and sensitive to irrelevant
or redundant features.

4.4 User Interface Layouts

User interface design (UI) or user interface engineering is the design of user interfaces for machines
and software, such as computers, home appliances, mobile devices, and other electronic devices,
with the focus on maximizing usability and the user experience. The goal of user interface design
is to make the user’s interaction as simple and efficient as possible, in terms of accomplishing
user goals (user-centered design).

Good user interface design facilitates finishing the task at hand without drawing unneces-
sary attention to itself. Graphic design and typography are utilized to support its usability,
influencing how the user performs certain interactions and improving the aesthetic appeal of the
design; design aesthetics may enhance or detract from the ability of users to use the functions of
the Interface.The design process must balance technical functionality and visual elements (e.g.,
mental model) to create a system that is not only operational but also usable and adaptable to
changing user needs.

Christ College (Autonomous), Irinjalakuda 9

IMPLEMENTATION
AND

MAINTENANCE

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

Chapter 5

5 Implementation

5.1 Tools/Scripts for Implementation

5.1.1 Python

Python is a high-level, interpreted programming language that is designed to be easy to read
and write. Python is known for its simple syntax, which allows programmers to write code
quickly and easily. is an object-oriented language, which means that it supports the creation of
objects and classes that can be used to build complex applications. Python has a large standard
library that includes modules for a wide range of tasks, from web development and database
management to scientific computing and artificial intelligence. There are also many third-party
libraries available for Python that provide additional functionality and support for specific tasks.
Python is popular among developers because it is easy to learn and use, and it can be used for
a wide range of applications.

5.2 Module hierarchy

� Data entered undergoes Machine Learning
The stress detection system uses image processing techniques to preprocess IT profession-
als’ captured images. The images are analyzed, manipulated, resized, and converted into
digital format. These images are then used for machine learning algorithms to classify
stress levels.

� Model is being compiled with the pre-processed image set
The weight of the base model is being loaded and compiled and optimized using the adam
optimizer. And the model is being set for training and is being fitted.

5.3 Coding

Python

Python is a high-level, interpreted programming language that emphasizes code readability and
simplicity. Python’s syntax is straightforward, making it easy to read and write, and it has a vast
standard library that provides modules for a wide range of tasks, including web development,
scientific computing, artificial intelligence, and more.

5.4 Problems Encountered

The following are some of the problems faced in this system:

� Computational Complexity.

� Continues capturing of images creates large unusable datasets.

� Auto captured image datasets detection will get more time consuming or inaccurate.

Christ College (Autonomous), Irinjalakuda 10

TESTING
AND

IMPLEMENTATION

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

Chapter 6

6 Testing And Implementation

6.1 Test Plans

A test plan documents strategy that will be used to verify and ensure that a product or system
meets its design specification and other requirements. A test plan is usually prepared by or with
significant input from the engineer.This document describes the plans for testing the architectural
prototype of System.

In my Project the machine has to be tested to get the Desired Output.I use Different Classes
of images for testing the system.

6.2 Unit testing

In computer programming, unit testing is a software testing method by which individual units
of source code, sets of one or more computer program modules together with associated control
data, usage procedures, and operating procedures, are tested to determine whether they are fit
for use. In our system,

� Test to check whether the encrypting module work properly

� Test to check whether the stegano module work properly.

� Test to check whether the decrypting module accurately and correctly decrypt the data.

6.3 Integration testing

Integration testing (sometimes called integration and testing) is the phase in software testing
in which individual software modules are combined and tested as a group. It occurs after unit
testing and before validation testing. Integration testing takes as its input modules that have
been unit tested, groups them in larger aggregates, applies tests defined in an integration test
plan to those aggregates, and delivers as its output the integrated system ready for system testing.

� check whether the capturing image work properly.

� check whether the facial emotion detection and heart beat sensor work properly.

� check whether the model generates the description Accurately.

6.4 System testing

System testing of software or hardware is testing conducted on a complete, integrated system to
evaluate the system’s compliance with its specified requirements.

6.5 Implementation

Test the machine with number of employees.

Christ College (Autonomous), Irinjalakuda 12

RESULTS

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

Chapter 7

7 Results

The system works when the IT professional will be seat in the front of camera then it will be able
to detect the facial expression and run in real-time. A camera is used to capture the near front
sight of the employee while he is working in front of the computer. Captured video is divided
into sections of equivalent length and set of similar number of image frames are extracted from
each part correspondingly and are examined. The image detection includes the calculation of the
variation in the place of the eyebrow from its mean position. The displacement of eyebrow from
its place is considered by examining the image for the eyebrow co-ordinates. If the employee
is found stressed in the successive sections of time intervals which was previously divided, the
decision for stress detection is formed for a employee working in front of computer with the
obtained results it employs the technique of deep learning. The stress detection module scans
the binary image from the extreme left top to record the coordinates of the eyebrow. The stress
detection module scans the binary image from the extreme left top to record the coordinates of
the eyebrow. The offline displacement calculation sub-module calculates the shifting of eyebrow
using the obtained eyebrow co-ordinates which is subsequently followed by variance calculation
of the displacement. The classifier sub-module is trained offline are employed to determine the
presence of emotion. The integrated decision of individual frames eventually determines the level
of stress involved.The main objective of the stress detection system is to monitor the emotional
status of IT professionals and detect and reduce stress levels in order to create a comfortable
workplace for them The system utilizes image processing and machine learning techniques to
analyze stress patterns in IT professionals . Image acquisition tools are used to capture images of
the employees,a heart beat sensor detectect the heart rate which are then processed and analyzed
using image processing techniques . Machine learning algorithms, such as KNN classifiers, are
applied to classify stress levels based on the analyzed images . average of both heart rate and
emotions will calculate. The system also includes the use of traditional survey forms to gather
additional data on stress levels The ultimate goal is to provide employees with preventative
stress management solutions and create a healthy and spontaneous working environment.

Christ College (Autonomous), Irinjalakuda 13

CONCLUSIONS
AND

FUTURE WORKS

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

Chapter 8

8 Conclusion and Future Works

8.1 Conclusion

According to implementation and conclusion to predict stress in the employees by observing the
captured images of authenticated users which makes the system secure. The image is captured
and detect heart beat using a sensor automatically when the authenticate user is logged in based
on some time interval. Average of this captured images and the heart beat are used to detect the
stress of the user based on some standard conversion and image processing mechanisms. Then
the system will analyze the stress levels by using Machine Learning algorithms which generates
the results that are more efficient.

8.2 Future Enhancement

As a future work the Deep Learning algorithms and Machine Learning algorithms can used to
detect stress in employees.Machine learning can enhance stress detection by integrating diverse
data sources, developing personalized models, integrating real-time monitoring and intervention,
conducting longitudinal analysis, incorporating explainable AI techniques, considering cross-
cultural and ethical considerations, and integrating stress detection technologies into healthcare
systems. These advancements can improve the accuracy and relevance of stress assessments,
facilitate timely interventions, and enable more holistic approaches to stress management and
mental health care. By addressing these areas, future machine learning stress detection can
contribute to more effective, personalized, and accessible solutions.

Christ College (Autonomous), Irinjalakuda 15

REFERENCES

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

9 Bibliography

� G. Giannakakis, D. Manousos, F. Chiarugi, “Stress and anxiety detection using facial cues
from videos,” Biomedical Signal processing and Control”, vol. 31, pp. 89- 101, January
2017.

� Nisha Raichur, Nidhi Lonakadi, Priyanka Mural, “Detection of Stress Using Image Pro-
cessing and Machine Learning Techniques”, vol.9, no. 3S, July 2017.

� U. S. Reddy, A. V. Thota and A. Dharun, ”Machine Learning Techniques for Stress Pre-
diction in Working Employees,” 2018 IEEE International Conference on Computational
Intelligence and Computing Research (ICCIC), Madurai, India, 2018, pp. 1-4.

� Healthy office: Using smartphones and wearable sensors, employees may recognize their
moods at work. In: Pervasive Computing and Communication Workshops (PerCom Work-
shops), 2016 IEEE International Conference on. IEEE; 2016, p. 1–6

� Liu, D., Ulrich, M. Listen to your heart: Stress prediction Vol 13, Issue 03, MARCH/2022
ISSN NO:0377-9254 www.jespublication.com PageNo:425 using consumer heart rate sen-
sors 2015;

� T. Jick and R. Payne, “Stress at work,” Journal of Management Education, vol. 5, no. 3,
pp. 50-56, 1980.

� ”Stress and anxiety detection using facial cues from videos,” Biomedical Signal Processing
and Control, vol. 31, pp. 89-101, January 2017. G. Giannakakis, D. Manousos, F. Chiarugi

� Bhattacharyya, R., Basu, S. (2018). Retrieved from ‘The Economic Times’.

� Bakker, J., Holenderski, L., Kocielnik, R., Pechenizkiy, M., Sidorova, N.. Stess@ work:
From measuring stress to its understanding, prediction and handling with personalized
coaching. In: Proceedings of the 2nd ACM SIGHIT International health informatics sym-
posium. ACM; 2012, p. 673–678.

� https://www.kaggle.com/qiriro/stres

� OSMI Mental Health in Tech Survey Dataset, 2017

� Communications, N.. World health report. 2001. URL: http://www.who.int/whr/2001/mediacentre/pressrelease/en/.

Christ College (Autonomous), Irinjalakuda 16

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

APPENDIX

A User Interface

Figure 2: User Interface

Figure 3: Stress Detection 1

Christ College (Autonomous), Irinjalakuda 17

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

Figure 4: Stress Detection 2

Christ College (Autonomous), Irinjalakuda 18

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

B Code

import numpy as np

import cv2

from tensorflow.keras.models import load_model

from tensorflow.keras.preprocessing.image import img_to_array

import serial

import time

import sys

from PyQt5 import QtWidgets

from PyQt5.QtWidgets import QDialog, QApplication, QFileDialog

from PyQt5.uic import loadUi

from PyQt5.QtGui import QIcon, QPixmap, QImage

from PyQt5.QtCore import Qt

Load SSD and ResNet network based Caffe model for 300x300 dim images

net = cv2.dnn.readNetFromCaffe("deploy.prototxt", "res10_300x300_ssd_iter_140000.caffemodel")

classifier = load_model(’./Emotion_Detection.h5’)

class_labels = [’Angry’, ’Happy’, ’Neutral’, ’Sad’, ’Surprise’]

Video stream initialization

vs = cv2.VideoCapture(0)

hwfinal=0

happyfinal = 0

sadfinal = 0

surprisefinal = 0

angryfinal = 0

fearfinal = 0

neutralfinal = 0

label = None

Serial port initialization for MAX30102 sensor

ser = serial.Serial(’COM5’, 9600) # Replace ’COMX’ with the appropriate port

class MainWindow(QDialog):

def __init__(self):

super(MainWindow, self).__init__()

loadUi("final.ui", self)

self.browse.clicked.connect(self.browsefiles)

self.result.clicked.connect(self.finalemotion)

def finalemotion(self):

global happyfinal, sadfinal, surprisefinal, angryfinal, fearfinal, neutralfina,hwfinal

Calculate total emotions

total_emotions = happyfinal + sadfinal + surprisefinal + angryfinal + fearfinal + neutralfinal+hwfinal

Calculate stress level

stress_level = (sadfinal + angryfinal + hwfinal) / total_emotions

Determine stress status

stress_status = "Not Stressed" if stress_level < 0.5 else "Stressed"

self.restBox.setText(stress_status)

Christ College (Autonomous), Irinjalakuda 19

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

def browsefiles(self):

global happyfinal, sadfinal, surprisefinal, angryfinal, fearfinal, neutralfinal,hwfinal

while True:

ret, frame = vs.read()

Convert frame to grayscale

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

Convert frame dimensions to a blob and 300x300 dimensions

(height, width) = frame.shape[:2]

blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0,

(300, 300), (104.0, 177.0, 123.0))

Pass the blob into DNN

net.setInput(blob)

detections = net.forward()

Loop over the detections to extract specific confidence

for i in range(0, detections.shape[2]):

confidence = detections[0, 0, i, 2]

If confidence is greater than the minimum confidence

if confidence < 0.5:

continue

Compute the (x, y)-coordinates of the bounding box

box = detections[0, 0, i, 3:7] * np.array([width, height, width, height])

(x1, y1, x2, y2) = box.astype("int")

Draw the bounding box of the face along with the associated probability

text = "{:.2f}%".format(confidence * 100) + " (" + str(y2 - y1) + ", " + str(x2 - x1) + ")"

y = y1 - 10 if y1 - 10 > 10 else y1 + 10

cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)

cv2.putText(frame, text, (x1, y), cv2.LINE_AA, 0.45, (0, 0, 255), 2)

Extract ROI (Region of Interest)

roi_gray = gray[y1:y1 + y2 - y1, x1:x1 + x2 - x1]

roi_gray = cv2.resize(roi_gray, (48, 48), interpolation=cv2.INTER_AREA)

if np.sum([roi_gray]) != 0:

roi = roi_gray.astype(’float’) / 255.0

roi = img_to_array(roi)

roi = np.expand_dims(roi, axis=0)

Make a prediction on the ROI, then lookup the class

preds = classifier.predict(roi)[0]

global label

label = class_labels[preds.argmax()]

label_position = (x1, y)

cv2.putText(frame, label, label_position, cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 3)

else:

cv2.putText(frame, ’No Face Found’, (20, 60), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 3)

Show the output frame

cv2.imshow("Window", frame)

Christ College (Autonomous), Irinjalakuda 20

M.Sc. Computer Science 2022-2024
Stress detection in IT professional by

image processing and machine learning

Read serial data from MAX30102 sensor

stress_data = ser.readline().decode(’utf-8’)

print("Stress Level:", stress_data)

if int(stress_data)>70:

hwfinal+=1

Update emotion counters based on the detected emotion

frame = str(label)

if frame == "Happy":

happyfinal += 1

elif frame == "Sad":

sadfinal += 1

elif frame == "Surprise":

surprisefinal += 1

elif frame == "Angry":

angryfinal += 1

elif frame == "Neutral":

neutralfinal += 1

If the ’q’ key was pressed, break from the loop

if cv2.waitKey(1) == ord("q"):

break

Stop capturing

cv2.destroyAllWindows()

vs.release()

Start the application

app = QApplication(sys.argv)

mainwindow = MainWindow()

widget = QtWidgets.QStackedWidget()

widget.addWidget(mainwindow)

widget.setFixedWidth(715)

widget.setFixedHeight(453)

widget.show()

sys.exit(app.exec_())

cv2.destroyAllWindows()

vs.release()

Christ College (Autonomous), Irinjalakuda 21

Building A Voice Based Image
Caption Generator with Deep

Learning
PROJECT REPORT

Submitted By

NEEMA BABU

Reg. No. CCAWMCS004

For the award of the Degree of

Master of Science

in Computer Science
(University of Calicut)

under the guidance of

Ms. Sini Thomas

Head of The Department

M.Sc in COMPUTER SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

CHRIST COLLEGE (AUTONOMOUS)
IRINJALAKUDA, KERALA

2022-2024

ACKNOWLEDGMENT

Submitting my project in the divine feet of Almighty God.I would like to take this opportunity
to express my profound gratitude to all the people who have inspired and motivated to take this
project success.

I would like to thank our principal Rev.Fr.Dr. Jolly Andrews CMI, for proper ambience to
go on with the project. I take these opportunities to acknowledge my thanks to Ms Sini Thomas,
Head of the Department of Computer Science for valuable guidance in developing this project.
I’ am also thankful to my Project Guide Ms Sini Thomas, and all other staff in Department of
Computer Science for their immense support

My sincere thanks to all those well wishers and friends who have helped me during the course
of the project work and have been making it a great success. Last but not least, I wish to express
my thankfulness to my family members for their excellent support and co-ordination.

Date : NEEMA BABU

Declaration

I hereby declare that the project entitled “Building A Voice Based Image Caption
Generator with Deep Learning” submitted to Calicut university, on partial fulfillment of
the requirement for the award of degree in Master of Science in Computer Science is a record of
original work done by me, under the guidance of Ms.Sini Thomas , Head of the Department of
Computer Science, Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Name: NEEMA BABU

Date : RegNo: CCAWMCS004

DEPARTMENT OF COMPUTER SCIENCE

Christ College(Autonomous)

Irinjalakuda

CERTIFICATE

Certified that this thesis entitled ’Building A Voice Based Image Caption Generator with
Deep Learning’ submitted by “’Neema Babu (Reg. No. CCAWMCS004)” in partial ful-
fillment for the award of the degree of Master of Science in Computer Science under University
of Calicut during the year 2022-2024, is the bonafide work carried out by him under my guidance
and supervision.

Ms. Sini Thomas Ms. Sini Thomas
Head of The Department, CSE Head of the Department

Internal Guide Computer Science

EXTERNAL EXAMINER INTERNAL EXAMINER

Abstract

Image processing is used in various industries and it is remaining as one of the most advanced
technologies used in Google, medical field etc. Recently, this technology has also attracted many
programmers and developers due to its free and open source tool, which every developer can
afford it. Image processing also helps in finding out lot of information from a single image
since it is currently utilized as a primary method for collecting the information from image and
processing it for some purpose and some operations will also be performed on the image. A voice
based image caption generation is a task that involves the NLP (natural language processing)
concept for understanding the description of an image. The combination of CNN and LSTM is
considered as the best solution for this project; the main target of the proposed research work is
to obtain the perfect caption for an image. After obtaining the description, it will be converted
into text and the text into a voice. Image description is a best solution used for a visually
impaired people who are unable to comprehend visuals. With the use of a voice based image
caption generator, the descriptions can be obtained as a voice output, if their vision can’t be
resorted. In future, image processing will emerge as a significant research topic, which will be
primarily utilized to save human lives.

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Project Profile . 1
1.3 Contributions . 1

2 Problem Definition and Methodology 2
2.1 Problem definition . 2
2.2 Objectives . 2
2.3 Motivation . 2
2.4 Methodology . 2
2.5 Scope . 2

3 Requirement Analysis and Specification 3
3.1 Requirement Analysis . 3
3.2 Existing System . 3
3.3 Proposed System . 3
3.4 Requirement Specification . 3

3.4.1 Functional Requirements . 3
3.4.2 Non-Functional Requirements . 4

3.5 Feasibility Study . 4
3.5.1 Technical Feasibility . 4
3.5.2 Economical Feasibility . 4
3.5.3 Operational feasibility . 4

3.6 Software Requirement Specification . 5
3.6.1 Introduction . 5
3.6.2 Overall Description . 5
3.6.3 Design and Implementation Constraints 6
3.6.4 Assumptions and Dependencies . 6
3.6.5 External Interface Requirements . 6
3.6.6 System Features . 7
3.6.7 Other Nonfunctional Requirements . 7

4 System Design 8
4.1 Users of the System . 8
4.2 Modularity criteria . 8
4.3 Design Methodologies . 8

4.3.1 System Architecture . 8
4.3.2 Convolutional Neural Network (CNN) . 8
4.3.3 Long Short Term Memory (LSTM) . 9

5 Implementation 10
5.1 Tools/Scripts for Implementation . 10

5.1.1 Python . 10
5.2 Module hierarchy . 10
5.3 Coding . 11
5.4 Problems Encountered . 11

6 Testing And Implementation 12
6.1 Test Plans . 12
6.2 Unit testing . 12
6.3 Integration testing . 12
6.4 System testing . 12
6.5 Implementation . 12

7 Results 13

8 Conclusion and Future Works 15
8.1 Conclusion . 15
8.2 Future Enhancement . 15

9 Bibliography 16

Appendix 18

A Training And Testing 18

B Code 21

List of Figures

1 LSTM Structure . 9
2 During Training Process . 18
3 Description Generated . 19
4 Voice Output . 19
5 Graph for Epoch with Loss values . 20

INTRODUCTION

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

Chapter 1

1 Introduction

1.1 Overview

In recent years Deep learning is one of the most used trend in Machine Learning and artifical
intelligence, it is a machine learning technique inspired by the human brain, it uses the algorithm
like convolutional neural network,recurrent neural network,long short term memory etc., where
there are many developments had already made for visually impaired people.Voice based image
caption generator is used to identify the objects and information present in the image, which
could improve the lives of visually impaired people. Using CNN and LSTM together can be
best fit for the project because LSTM is similar to RNN, and the RNN algorithm is depending
on the LSTM because its having the feedback connectivity and also LSTM process the entire
sequence of data. The main challenge of deep learning is when we deal with large data we need
to go deeper that is analyzing the huge data need to done thoroughly. The structure of text
descriptions should be relevant to the objects present in the image, and the relationship between
the objects and its description need to be clarified. Our ultimate aim of the project is to train
the dataset with good result and with the high accuracy. Flicker dataset is utilized with the
huge collection of photographs used for computer vision and image processing algorithms. So the
voice based caption generator act as a eye for the people don’t have the ability to conceptualize
the scene happen arround themselves, they can roam anywhere without the support of anyone
else.

1.2 Project Profile

� Title : Building A Voice Based Image Caption Generator with Deep Learning

� Domain : Deep Learning

� Language : Python

� Version : 3.08.0

1.3 Contributions

The major contributions of this system are:

� The enhanced accuracy is improved.

� Enhanced precision.

Christ College (Autonomous), Irinjalakuda 1

PROBLEM DEFINITION
AND

METHODOLOGY

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

Chapter 2

2 Problem Definition and Methodology

2.1 Problem definition

The image caption generator is a task that involves computer vision and NLP(natural language
processing) concepts to recognize the context of an image and describe them in a natural language
like English .And the Convolution Neural Network(CNN) and Long Short Term Memory(LSTM)
can be combined to create an image caption generator and generate captions for your own images.

2.2 Objectives

To learn the concept of CNN and LSTM model and build a working model of image caption
generator. Features of the images where extracted by using CNN model trained on large image
dataset. And we are giving the features as an input to the LSTM model and it will generate
caption for an image. It requires both computer vision system to localize and describe the
features of the image in a single word using natural language.

2.3 Motivation

This project will help us to understand the related methods and attention mechanism,which
plays an important role in computer vision and is recently widely used in image caption gen-
erator tasks. And the advantages and the shortcomings of these methods are implemented,
providing the commonly used datasets and evaluation criteria in this field, and it explained how
the present scenarios happening in front of visually impaired people.

2.4 Methodology

Generating a caption for a given image is a challenging problem in the deep learning domain.
we will use different techniques of computer vision and NLP to recognize the context of an
image and describe them in a natural language like English. we will build a working model of
the image caption generator by using CNN (Convolutional Neural Networks) and LSTM (Long
short term memory) units.And to judge the quality of the description created during the process.

2.5 Scope

Accurate image captioning with the use of multi modal neural networks has been a interesting
topic in the field of deep learning. Its been working with several of these approaches and the
algorithms seems to give very promising results.when it comes to using image captioning in real
world application most of the time only a few are mentioned such as hearing aid for the visually
impaired people and content generation.Main scope is we are adding the additional functionality
like audio.once the description is generated it will readout the description of an image.

Christ College (Autonomous), Irinjalakuda 2

REQUIREMENT ANALYSIS

AND
SPECIFICATION

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

Chapter 3

3 Requirement Analysis and Specification

3.1 Requirement Analysis

To learn the concept of CNN and LSTM model and build a working model of image caption
generator. Features of the images where extracted by using CNN model trained on large image
net dataset. And we are giving the features as an input to the LSTM model and it will gener-
ate caption for an image. It requires both computer vision system to localize and describe the
features of the image in a single word using natural language.

3.2 Existing System

The image caption generator are describing the scenes because images without the captions is
meaningless . The process relies on Convolution Neural Network(CNN) that encodes an image
into a compact representation by object detection that generates a corresponding sentence. This
model is trained to maximize the accuracy and precision of the caption for the given image.
Experiments on several datasets show the robustness of ICG in terms of qualitative results and
quantitative evaluations. By imparting various hyper parameter tuning, the model can be made
more efficient and productive.

3.3 Proposed System

The Proposed methodology for voice based captions which is not only deals with internal images
but also give a descriptions for external input images .once a description is created that text
description will be read out as voice outputs then the audio is saved in the separate folder that
contains all the audio files for the future references. For developing this model we have used
convolutional neural network and long short term memory. Convolutional neural network for
indentify the various features or objects that are present in the image. It will be helpful for
the entire system predict the proper result then it will fed into the long short term memory to
produce the sequence of words that properly describe about the image .

3.4 Requirement Specification

3.4.1 Functional Requirements

In software engineering and system engineering, functional requirement defines function of a
system and its components. A function is described as a set of inputs, the behavior and out-
puts.Functional requirements may be calculations, technical details, data manipulation and pro-
cessing and other specific functionality that define what a system is supposed to accomplish. Be-
havioral requirements describing all the cases where the system uses the functional requirements
are captured in use cases. Functional requirements are supported by non-functional requirements
(also known as quality requirements), which impose constraints on the design or implementation
(such as performance requirements, security, or reliability). Generally, functional requirements
are expressed in the form ”system must do ¡requirement¿”, while non-functional requirements are
”system shall be ¡requirement¿”. The plan for implementing functional requirements is detailed
in the system design. The plan for implementing non-functional requirements is detailed in the
system architecture. As defined in requirements engineering, functional requirements specify
particular results of a system. This should be contrasted with non- functional requirements
which specify overall characteristics such as cost and reliability. Functional requirements drive
the application architecture of a system, while non-functional requirements drive the technical
architecture of a system.In some cases a requirements analyst generates use cases after gather-
ing and validating a set of functional requirements. The hierarchy of functional requirements is:
user/stakeholder request - feature - use case - business rule. Each use case illustrates behavioral
scenarios through one or more functional requirements. Often, though, an analyst will begin by

Christ College (Autonomous), Irinjalakuda 3

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

eliciting a set of use cases, from which the analyst can derive the functional requirements that
must be implemented to allow a user to perform each use case.This system does:

� Collect the data and generate a captio for the image and convert it in to voice which could
improve the lives of visually impaired people.

3.4.2 Non-Functional Requirements

In systems engineering and requirements engineering, a non-functional requirement (NFR) is a
requirement that specifies criteria that can be used to judge the operation of a system, rather
than specific behaviors. They are contrasted with functional requirements that define specific
behavior or functions. The plan for implementing functional requirements is detailed in the
system design. The plan for implementing nonfunctional requirements is detailed in the system
architecture, because they are usually Architecturally Significant Requirements. Broadly, func-
tional requirements define what a system is supposed to do and non-functional requirements
define how a system is supposed to be. Functional requirements are usually in the form of
”system shall do requirement”, an individual action or part of the system, perhaps explicitly
in the sense of a mathematical function, a black box description input, output, process and
control functional model or IPO Model. In contrast, non-functional requirements are in the
form of ”system shall be requirement”, an overall property of the system as a whole or of a
particular aspect and not a specific function. The system’s overall properties commonly mark
the difference between whether the development project has succeeded or failed. Non-functional
requirements are often called ”quality attributes” of a system. Other terms for non-functional
requirements are ”qualities”, ”quality goals”, ”quality of service requirements”, ”constraints”
and ”non-behavioral requirements”.. Qualities—that is non-functional requirements—can be
divided into two main categories: Execution qualities, such as safety, security and usability,
which are observable during operation (at run time). Evolution qualities, such as testability,
maintainability, extensibility and scalability, which are embodied in the static structure of the
system.

3.5 Feasibility Study

3.5.1 Technical Feasibility

Technical feasibility assesses the current resources (hardware and software) and technologies,
which are required to accomplish user requirements. It requires a computer with python ana-
conda installed. Today every organization has computer, so it is not an extra cost.Before the
starting of the project,or in the requirement phase we assign the needed hardware and soft-
ware.After termination ofb the project,we made a comparison between the assigned ones and
actually needed ones

3.5.2 Economical Feasibility

Economic feasibility is the most frequently used method for evaluating the effectiveness of pro-
posed system.The proposed model is cost effective.

3.5.3 Operational feasibility

The operational feasibility of building a voice-based image caption generator with deep learning
depends on various factors such as the availability of suitable datasets, computational resources,
expertise in deep learning, and integration with existing systems. Assessing these factors will
help determine if the project is feasible from an operational standpoint.

Christ College (Autonomous), Irinjalakuda 4

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

3.6 Software Requirement Specification

3.6.1 Introduction

Purpose

The purpose of this document is to provide a debriefed view of requirements and specifica-
tions of the project called Building A Voice Based Image Caption Generator with Deep Learning.

The goal of this project is to provide better accuracy in analyzing the image and generating
a suitable caption in vocal format.

Document Conventions

� All terms are in Times New Roman style.

� Main features or important terms are in bold.

� Use LateX for documentation.

Intended Audience and Reading Suggestions

Anyone with some programming experience, with familiarity in Python and Deep learning, can
understand this document.The document is intended for developers, software architects, testers,
project managers and documentation writers. This Software Requirement Specification also in-
cludes:

� Overall description of the product

� External interface requirements

� System Features

� Other nonfunctional requirements

Product Scope

The product scope of building a voice-based image caption generator with deep learning typ-
ically includes defining the target user experience, specifying technical requirements, outlining
functionalities (such as voice input, image processing, deep learning model integration), and
determining any constraints or limitations (e.g., hardware compatibility, language support).
Additionally, it involves defining the scope of the training data, model evaluation metrics, and
potential deployment platforms (e.g., mobile app, web service).

References

� IEEE Standard 830-1998 Recommended Practice for Software Requirements Specifications.

3.6.2 Overall Description

Product Perspective

Christ College (Autonomous), Irinjalakuda 5

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

The product perspective of building a voice-based image caption generator with deep learn-
ing involves considering its integration into existing systems or platforms (if applicable), un-
derstanding its interaction with users and other components, and ensuring compatibility with
various devices and operating systems. It also entails evaluating the product’s potential impact
on users and stakeholders, addressing scalability and maintenance requirements, and aligning
with broader strategic goals or initiatives within the organization or industry.

Operating Environment

� Operating System: Windows 11

� Processor: Intel Core i3 / AMD Ryzen 3 or Higher

� Memory: 4GB or more

3.6.3 Design and Implementation Constraints

� Computational Complexity.

� Training time.

� Integration Challenges

3.6.4 Assumptions and Dependencies

Assumptions

The proposed approach assumes a dataset that encompasses a wide range of images and is
thoroughly annotated is readily accessible for training models. The efficacy of the model hinges
upon the inclusiveness and excellence of this dataset. A diverse and well-annotated dataset that
includes various images is at one’s disposal for the purpose of model training.

Dependencies

� Python

� CUDA and cuDNN (Optional)

3.6.5 External Interface Requirements

User Interfaces

First the image to be identified is being fed into the model using an external web interface.The
uploaded image is then processed by the model and then generate the proper caption and is
converted as voice output.

Hardware Interfaces

� Operating System: Windows or any other Platform

Christ College (Autonomous), Irinjalakuda 6

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

� Hardware: Intel Core i5

� Internet Connection

Software Interfaces

� Python

Communications Interfaces

Standard HTTP COMMUNICATION interface required for internet connection.

3.6.6 System Features

� Deep Learning Model Integration:
Integration of a deep learning model (e.g., CNN-LSTM) trained on image-caption datasets
to generate descriptive captions based on input images.

� Functional Requirements
Image input is given to the machine and it generates a caption and it converts in to voice.

3.6.7 Other Nonfunctional Requirements

Performance Requirements

� Accuracy: The classification accuracy of the system must meet or exceed predefined stan-
dards, reflecting the model’s capability to correctly identify images. High accuracy is
crucial for the system’s reliability and utility in various applications.

� Resource Utilization: Efficient utilization of computational resources, including CPU,
GPU, or TPU, is necessary to ensure optimal performance during training and inference.
The system should manage resource allocation effectively, avoiding bottlenecks or overuti-
lization.

� Training Time: The time required for model training should be within acceptable limits,
allowing for timely updates and improvements. Efficient training times are especially im-
portant when retraining the model with new data or making enhancements.

� Compatibility: Should be compatible with a wide range of devices, operating systems and
platforms, to ensure its widespread adoption and use.

Christ College (Autonomous), Irinjalakuda 7

SYSTEM DESIGN

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

Chapter 4

4 System Design

4.1 Users of the System

User: The user who handles the System.

4.2 Modularity criteria

The proposed system has following modules :

� Dataset Collection and Data Cleaning.

� Extracting Feature Vector.

� Loading dataset for Training the model.

� Tokenizing Vocabulary

� Creation of Data Generator.

4.3 Design Methodologies

4.3.1 System Architecture

Input image taken from the user side convolutional neural network identify the objects that
present in the image it extract the important features of an image and store those feature vector
values, using pooling functions it will predict the features. Once the process completed it will
move on to the long short term memory layer for the sequence sentence prediction based on the
previous one, here softmax function is used to predict the output accurately and for overcoming
the over fitting problem ,when we are working with the neural network most of the nodes having
the output that are related to the previous one its results in overfitting, to avoid those problem
softmax layer is used .If the output of this layer is between the range of zero to one ,if the range
is greater are lesser it results in the error .and system will not predict the correct description for
an image

4.3.2 Convolutional Neural Network (CNN)

A convolutional or CNN is a class of deep neural network it is mostly used for analyzing visual
images and classification, and also it is used in various field like image recognition , NLP and
speech recognition. It has three layers namely, convolutional layer, pooling layer, and fully con-
nected layer. The main advantage of using convolutional neural network is, it can identify the
objects and faces present in the image. If a picture is indexed with cats and dogs, it will identify
the key attributes and relationship between the two, and also behavioral patterns of the objects
will be noted by CNN. It is truly efficient than the other algorithms because it has the ability
to predict the image with highest accuracy.

Christ College (Autonomous), Irinjalakuda 8

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

Figure 1: LSTM Structure

4.3.3 Long Short Term Memory (LSTM)

Long short term memory is a type of RNN, it is used for sequence prediction problems. The
non-relevant information will be removed by using LSTM, and long short term memory have
the efficient performance when compared to the RNN, it can be sustainable get the information
with the long duration of time. It can be able to predict the information from the next data or
previous data. The main challenge in LSTM is it will take more time to drain the data depending
on the size of the dataset. CNN will be used for extracting information’s from the image and
LSTM will generate captions for the input image.

Christ College (Autonomous), Irinjalakuda 9

IMPLEMENTATION
AND

MAINTENANCE

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

Chapter 5

5 Implementation

5.1 Tools/Scripts for Implementation

5.1.1 Python

Python is a high-level, interpreted programming language that is designed to be easy to read
and write. Python is known for its simple syntax, which allows programmers to write code
quickly and easily. is an object-oriented language, which means that it supports the creation of
objects and classes that can be used to build complex applications. Python has a large standard
library that includes modules for a wide range of tasks, from web development and database
management to scientific computing and artificial intelligence. There are also many third-party
libraries available for Python that provide additional functionality and support for specific tasks.
Python is popular among developers because it is easy to learn and use, and it can be used for
a wide range of applications.

5.2 Module hierarchy

� Dataset Collection and Data Cleaning
We are using flicker dataset, that contains images and descriptions that descriptions are
in the form of dictionary with keys and values ,it’s a easy way to map the description with
input images . Every text dataset needs to be done with the data cleaning process. That
involves clearing the symbols like special characters like asterisk, semicolon, colon, double
quotes. Then the keywords starts with digits or ends with digits will be cleaned in this
module. Compressing the long sentence , which contains the inappropriate words

� Extracting Feature Vector
Extracting features of an image with the help of exception model and it is a pre-trained
model, this model is utilized for the implementation process by using this model we can’t do
anything the trained model will do everything because its already trained by the large im-
age net dataset it will classify the various difference in the image. It will take 299*299*3 as
an input image and removing the end classification layers for getting the 2048 feature vec-
tor. It can accept any image format including PNG, JPG, and others. The neural network
reduces large set of features extracts from the original input into smaller recurrent neu-
ral network-compatible feature vector. It is the major reason for calling CNN as ‘Encoder’.

� Loading Dataset for Training the Model
In our flicker dataset folder, we have image file, it holds five thousand images for training
and also it includes a function name called open input, where it will print the image name
in a string format. Next step is to be fun clean function, which will have captions in the
form of dictionary. Also, the Begin and End keyword is added at the starting and ending
point of the description. It will be given to long short term memory to forecast the caption.
End keyword used to halt the looping process. Training our model generally about to test
the length of the training images, training the descriptions and it will include the features
too. Best description is obtained only by the training the developed model it especially
based on the epoch values what we have given during the process of training. It results in
the forecast of accurate description for an input. During the process of training the loss
value should be reduced in every iteration, how less the loss value will result in the good
model.

� Tokenizing Vocabulary
When language processing is used, it is required to tokenize the data, i.e. segregating a

Christ College (Autonomous), Irinjalakuda 10

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

data like they’ve into “they” ,”have” ,compressing huge content into small readable unique
content. Basically token means arranging the data into smaller blocks. In this module,
keras library is used for tokenizing the text data and it can be saved into a separate file,
which contains the index value of the text

� Creation of Data Generator
In this module it follows the supervised and un supervised learning model, having the
internal image and their accurate output description is comes under the supervised learn-
ing ,if user is giving the external source it will show the output with the help of learning
pattern from the trained data and it’s an un supervised learning. when we using the data
generator it first going through the CNN layer and performing some process like pooling
,next passes through the LSTM model it taken the output of CNN model and fit the first
input with the second generated word with the help of dense. Comparing each pixel of an
image long term short memory will forecast the suited description.

� Training the Model
We have trained our model using the method called fit generator().By using this method
training process completed for our project. We trained our model with various epochs
value one, two, three, and eight. And after the training process is completed we saved
the trained model to folder. By using 1 epoch value we are getting the eighty percentage
accuracy of description. While training it will take lots of time depending upon the system
compatibility for me it took 16 hours for training model using three epoch value. Gradually
the loss value is also decreasing with respect to the each iteration.

5.3 Coding

� Python
Python is a high-level, interpreted programming language that emphasizes code readability
and simplicity. Python’s syntax is straightforward, making it easy to read and write, and
it has a vast standard library that provides modules for a wide range of tasks, including
web development, scientific computing, artificial intelligence, and more.

5.4 Problems Encountered

The following are some of the problems faced in this system:

� Computational Complexity.

� Long training time may also prolong the development process

� User Acceptance

Christ College (Autonomous), Irinjalakuda 11

TESTING
AND

IMPLEMENTATION

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

Chapter 6

6 Testing And Implementation

6.1 Test Plans

A test plan documents strategy that will be used to verify and ensure that a product or system
meets its design specification and other requirements. A test plan is usually prepared by or with
significant input from the engineer.This document describes the plans for testing the architectural
prototype of System. In my Project the machine has to be tested to get the Desired Output.I
use Different Classes of images for testing the system.

6.2 Unit testing

In computer programming, unit testing is a software testing method by which individual units
of source code, sets of one or more computer program modules together with associated control
data, usage procedures, and operating procedures, are tested to determine whether they are fit
for use. In our system,

� Test the preprocessing module work properly.

� Test to check whether the data is image or not.

� Test to check whether the generation of caption is realted to the image.

� Test to check whether the voice caption of the image.

6.3 Integration testing

Integration testing (sometimes called integration and testing) is the phase in software testing
in which individual software modules are combined and tested as a group. It occurs after unit
testing and before validation testing. Integration testing takes as its input modules that have
been unit tested, groups them in larger aggregates, applies tests defined in an integration test
plan to those aggregates, and delivers as its output the integrated system ready for system testing.

� Check whether the machine takes the input data.

� Check whether the system generates the caption for the image

� Check whether the model convert the image to voice.

6.4 System testing

System testing of software or hardware is testing conducted on a complete, integrated system to
evaluate the system’s compliance with its specified requirements.

6.5 Implementation

� Test the machine with variety of image.

Christ College (Autonomous), Irinjalakuda 12

RESULTS

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

Chapter 7

7 Results

we have compiled some aspects of the image caption generation task, discussed the model frame-
work proposed in recent years to solve the description task. Focused on the algorithmic essence
of different attention mechanisms, and summarized how the attention mechanism is applied. We
summarize the large datasets and evaluation criteria commonly used in practice. So the ob-
tained captions are readout in the voice format and it help full for the visually unpaired people
to recognize. The variety of image captioning system is available today, experimental results
shows that this task still has better performance system and improvement. It mainly faces the
following challenges, how to generate complete natural language sentences like a human being,
and how to make the generated sentences grammatically correct and make the caption semantics
as clear as possible and consistent with the given image content.

Christ College (Autonomous), Irinjalakuda 13

CONCLUSIONS
AND

FUTURE WORKS

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

Chapter 8

8 Conclusion and Future Works

8.1 Conclusion

Voice based image caption generator has been developed using a CNN-LSTM model. Main
key aspects of our project to note, the proposed model not only depends on the dataset, the
proposed model is trained for testing the user input, so that it can predict the descriptions from
the external images. Out dataset consists of 8091 images. The proposed model is required to be
trained on huge dataset that contains more than 10,000 images for achieving a better accuracy.
This model is not applicable for the exact representation of an image that work finely for some
sort of pictures.

8.2 Future Enhancement

We are planning to implement caption generation for the dynamic video capturing ,it’s a tedious
and more time consuming process ,to overcome this kinds of stuff we are planning to implement
these concepts with the help of deep learning by using the most strong algorithm and planning
to converting the caption into the different possible languages. Because live captioning is the
required and most useful process for this technical world.

Christ College (Autonomous), Irinjalakuda 15

REFERENCES

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

9 Bibliography

� Sumathi, T., Hemalatha, M, “A combined hierarchical model for automatic image annota-
tion and retrieval.” In: International Conference on Advanced Computing (ICAC)- (2011).

� Dong-Jin Kim, Donggeun Yoo, Bonggeun Sim, In So Kweon, “Senetence Learning Deep
convolutional neural Network for Image Caption Generation “, In : 13th International
Conference on Ubiquitous Robots and Ambient Intelligence (URAl)-2016

� Varsha Kesavan, Vaidehi Muley,Megha kolhekar, “Deep Learning based Image Caption
Generation” Global Conference for Advancement in Technology (GCAT)-2019

� Ren C. Luo, Yu-Ting, Hsu, Yu-Cheng, Wen, Huan-Jun, Ye, “Visual Image Caption Gen-
eration for Service Robotics and Industrial Application” IEEE-2019

� Yu, M.T., Sein, M.M.: “Automatic image captioning system using integration of N cut
and color-based segmentation method”. In: Society of Instrument and Control Engineers
Annual Conference(SCCEAC)- (2011).

� Ushiku, Y., Harada, T., Kuniyoshi, Y.: “Automatic sentence generation from images”. In:
(ACM)Multimedia (2011)

� Federico, M., Furini, M.: “Enhancing learning accessibility through fully automatic cap-
tioning.” In: International Cross-Disciplinary Conference on Web Accessibility(ICDCWA)-
(2011)

� Xi, S.M., Im Cho, Y.: “Image caption automatic generation method based on weighted fea-
ture”. In: International Conference on Control, Automation and Systems(ICCAS) (2013)

� Horiuchi, S., Moriguchi, H., Shengbo, X., Honiden, S.: “Automatic image description by
using word-level features”. In: International Conference on Internet Multimedia Comput-
ing and Service(ICIMCS)- (2013)

� Ramnath, K., Vanderwende, L., El-Saban, M., Sinha, S.N., Kannan, A., Hassan, N., Gal-
ley, M.: “AutoCaption: automatic caption generation for personal photos ”. In: IEEE
Winter Conference on Applications of Computer Vision (2014)

� Sivakrishna Reddy, A., Monolisa, N., Nathiya, M., Anjugam, D.: “A combined hierarchical
model for automatic image annotation and retrieval” . In: International Conference on
Innovations in Information Embedded and Communication Systems(ICIIECS)- (2015)

� Shivdikar, K., Kak, A., Marwah, K.: “Automatic image annotation using a hybrid engine”.
In: IEEE India Conference (2015)

� Mathews, A.: “Captioning images using different styles”. In: ACM Multimedia Confer-
ence (2015)

Christ College (Autonomous), Irinjalakuda 16

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

� Mathews, A., Xie, L., He, X.: “Choosing basic-level concept names using visual and lan-
guage context”. In: IEEE Winter Conference on Applications of Computer Vision (2015)

� Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazebnik,
S.: “Flickr30k entities: collecting region-to-phrase correspondences for richer image-to-
sentence models”. In: International Conference on Computer Vision(ICCV)- (2015)

� Vijay, K., Ramya, D.: “Generation of caption selection for news images using stemming
algorithm”. In: International Conference on Computation of Power, Energy, Information
and Communication(ICCPEIC)- (2015)

� Shahaf, D., Horvitz, E., Mankof, R.: “Inside jokes: identifying humorous cartoon captions
”. In: International Conference on Knowledge Discovery and Data Mining (ICKDDM-
)(2015)

� Li, X., Lan, W., Dong, J., Liu, H.: Adding Chinese captions to images. In: International
Conference in Multimedia Retrieval(lCMR)- (2016)

� Jin, J., Nakayama, H.: Annotation order matters: recurrent image annotator for arbitrary
length image tagging. In: International Conference on Pattern Recognition(ICPR) (2016)

� Shi, Z., Zou, Z.: Can a machine generate humanlike language descriptions for a remote
sensing image? IEEE Trans. Geosci. Remote Sens. 55(6), 3623–3634 (2016)

� Shetty, R., Tavakoli, H.R., Laaksonen, J.: “Exploiting scene context for image captioning”.
In: Vision and Language Integration Meets Multimedia Fusion (2016)

� Li, X., Song, X., Herranz, L., Zhu, Y., Jiang, S.: “Image captioning with both object and
scene information”. In: ACM Multimedia (2016)

� Wang, C., Yang, H., Bartz, C., Meinel, C.: “Image captioning with deep bidirectional
LSTMs ”. In: ACM Multimedia (2016)

� Liu, C., Wang, C., Sun, F., Rui, Y.: Image2Text: a multimodal caption generator. In:
ACM Multimedia (2016)

Christ College (Autonomous), Irinjalakuda 17

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

APPENDIX

A Training And Testing

Figure 2: During Training Process

Figure 3: Description Generated

Christ College (Autonomous), Irinjalakuda 18

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

Figure 4: Voice Output

Figure 5: Graph for Epoch with Loss values

Christ College (Autonomous), Irinjalakuda 19

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

B Code

#mytestcode

import cv2

from keras.models import load_model

import numpy as np

from keras.applications import ResNet50

from keras.optimizers import Adam

from keras.layers import Dense, Flatten,Input, Convolution2D, Dropout, LSTM, TimeDistributed, Embedding, Bidirectional, Activation, RepeatVector,Concatenate

from keras.models import Sequential, Model

#from keras.utils import np_utils

#import keras.utils import np_utils

#from tensorflow.keras.utils import to_categorical

from keras.preprocessing import image, sequence

from keras.preprocessing.sequence import pad_sequences

from tqdm import tqdm

import pyttsx3

engine = pyttsx3.init()

vocab = np.load(’vocab.npy’, allow_pickle=True)

vocab = vocab.item()

inv_vocab = {v:k for k,v in vocab.items()}

print("+"*50)

print("vocabulary loaded")

embedding_size = 128

vocab_size = len(vocab)

max_len = 40

image_model = Sequential()

image_model.add(Dense(embedding_size, input_shape=(2048,), activation=’relu’))

image_model.add(RepeatVector(max_len))

language_model = Sequential()

language_model.add(Embedding(input_dim=vocab_size, output_dim=embedding_size, input_length=max_len))

language_model.add(LSTM(256, return_sequences=True))

language_model.add(TimeDistributed(Dense(embedding_size)))

conca = Concatenate()([image_model.output, language_model.output])

x = LSTM(128, return_sequences=True)(conca)

x = LSTM(512, return_sequences=False)(x)

x = Dense(vocab_size)(x)

out = Activation(’softmax’)(x)

model = Model(inputs=[image_model.input, language_model.input], outputs = out)

Christ College (Autonomous), Irinjalakuda 20

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

model.compile(loss=’categorical_crossentropy’, optimizer=’RMSprop’, metrics=[’accuracy’])

model.load_weights(’mine_model_weights.h5’)

print("="*150)

print("MODEL LOADED")

#resnet = ResNet50(include_top=False,weights=’imagenet’,input_shape=(224,224,3),pooling=’avg’)

resnet = load_model(’model.h5’)

print("="*150)

print("RESNET MODEL LOADED")

image = cv2.imread(’file.jpg’)

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

image = cv2.resize(image, (224,224))

image = np.reshape(image, (1,224,224,3))

incept = resnet.predict(image).reshape(1,2048)

print("="*50)

print("Predict Features")

text_in = [’startofseq’]

final = ’’

print("="*50)

print("GETING Captions")

count = 0

while tqdm(count < 20):

count += 1

encoded = []

for i in text_in:

encoded.append(vocab[i])

padded = pad_sequences([encoded], maxlen=max_len, padding=’post’, truncating=’post’).reshape(1,max_len)

sampled_index = np.argmax(model.predict([incept, padded]))

sampled_word = inv_vocab[sampled_index]

if sampled_word != ’endofseq’:

final = final + ’ ’ + sampled_word

Christ College (Autonomous), Irinjalakuda 21

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

text_in.append(sampled_word)

print(final)

engine.say(final)

engine.runAndWait()

#model.py

from keras.preprocessing.sequence import pad_sequences

from keras.utils import to_categorical

from keras.utils import plot_model

from keras.models import Model, Sequential

from keras.layers import Input

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import Embedding

from keras.layers import Dropout

from keras.layers.merge import add

from keras.callbacks import ModelCheckpoint

from keras.layers import Dense, Flatten,Input, Convolution2D, Dropout, LSTM, TimeDistributed, Embedding, Bidirectional, Activation, RepeatVector,Concatenate

from keras.models import Sequential, Model

embedding_size = 128

max_len = MAX_LEN

vocab_size = len(new_dict)

image_model = Sequential()

image_model.add(Dense(embedding_size, input_shape=(2048,), activation=’relu’))

image_model.add(RepeatVector(max_len))

image_model.summary()

language_model = Sequential()

language_model.add(Embedding(input_dim=vocab_size, output_dim=embedding_size, input_length=max_len))

language_model.add(LSTM(256, return_sequences=True))

language_model.add(TimeDistributed(Dense(embedding_size)))

language_model.summary()

conca = Concatenate()([image_model.output, language_model.output])

x = LSTM(128, return_sequences=True)(conca)

x = LSTM(512, return_sequences=False)(x)

x = Dense(vocab_size)(x)

out = Activation(’softmax’)(x)

model = Model(inputs=[image_model.input, language_model.input], outputs = out)

model.load_weights("../input/model_weights.h5")

model.compile(loss=’categorical_crossentropy’, optimizer=’RMSprop’, metrics=[’accuracy’])

model.summary()

model.fit([X, y_in], y_out, batch_size=512, epochs=50)

inv_dict = {v:k for k, v in new_dict.items()}

model.save(’model.h5’)

model.save_weights(’mine_model_weights.h5’)

np.save(’vocab.npy’, new_dict)

def getImage(x):

test_img_path = images[x]

Christ College (Autonomous), Irinjalakuda 22

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

test_img = cv2.imread(test_img_path)

test_img = cv2.cvtColor(test_img, cv2.COLOR_BGR2RGB)

test_img = cv2.resize(test_img, (299,299))

test_img = np.reshape(test_img, (1,299,299,3))

return test_img

#image processor

import numpy as np

import pandas as pd

import cv2

import os

from glob import glob

images_path = ’../input/flickr8k-sau/Flickr_Data/Images/’

images = glob(images_path+’*.jpg’)

len(images)

images[:5]

import matplotlib.pyplot as plt

for i in range(5):

plt.figure()

img = cv2.imread(images[i])

img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

plt.imshow(img)

from keras.applications import ResNet50

incept_model = ResNet50(include_top=True)

from keras.models import Model

last = incept_model.layers[-2].output

modele = Model(inputs = incept_model.input,outputs = last)

modele.summary()

images_features = {}

count = 0

for i in images:

img = cv2.imread(i)

img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

img = cv2.resize(img, (224,224))

img = img.reshape(1,224,224,3)

pred = modele.predict(img).reshape(2048,)

img_name = i.split(’/’)[-1]

images_features[img_name] = pred

count += 1

if count > 1499:

break

elif count % 50 == 0:

print(count)

len(images_features)

Christ College (Autonomous), Irinjalakuda 23

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

Text preprocess

caption_path = ’../input/flickr8k-sau/Flickr_Data/Flickr_TextData/Flickr8k.token.txt’

captions = open(caption_path, ’rb’).read().decode(’utf-8’).split(’\n’)

len(captions)

captions_dict = {}

for i in captions:

try:

img_name = i.split(’\t’)[0][:-2]

caption = i.split(’\t’)[1]

if img_name in images_features:

if img_name not in captions_dict:

captions_dict[img_name] = [caption]

else:

captions_dict[img_name].append(caption)

except:

pass

len(captions_dict)

#visualize image with caption

import matplotlib.pyplot as plt

for i in range(5):

plt.figure()

img_name = images[i]

img = cv2.imread(img_name)

img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

plt.xlabel(captions_dict[img_name.split(’/’)[-1]])

plt.imshow(img)

import matplotlib.pyplot as plt

for k in images_features.keys():

plt.figure()

img_name = ’../input/flickr8k-sau/Flickr_Data/Images/’ + k

img = cv2.imread(img_name)

img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

plt.xlabel(captions_dict[img_name.split(’/’)[-1]])

plt.imshow(img)

break

def preprocessed(txt):

modified = txt.lower()

modified = ’startofseq ’ + modified + ’ endofseq’

return modified

for k,v in captions_dict.items():

for vv in v:

Christ College (Autonomous), Irinjalakuda 24

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

captions_dict[k][v.index(vv)] = preprocessed(vv)

#create vocabulary

count_words = {}

for k,vv in captions_dict.items():

for v in vv:

for word in v.split():

if word not in count_words:

count_words[word] = 0

else:

count_words[word] += 1

len(count_words)

THRESH = -1

count = 1

new_dict = {}

for k,v in count_words.items():

if count_words[k] > THRESH:

new_dict[k] = count

count += 1

len(new_dict)

new_dict[’<OUT>’] = len(new_dict)

captions_backup = captions_dict.copy()

captions_dict = captions_backup.copy()

for k, vv in captions_dict.items():

for v in vv:

encoded = []

for word in v.split():

if word not in new_dict:

encoded.append(new_dict[’<OUT>’])

else:

encoded.append(new_dict[word])

captions_dict[k][vv.index(v)] = encoded

captions_dict

#build generator function

from keras.utils import to_categorical

from keras.preprocessing.sequence import pad_sequences

MAX_LEN = 0

for k, vv in captions_dict.items():

for v in vv:

if len(v) > MAX_LEN:

MAX_LEN = len(v)

print(v)

MAX_LEN

captions_dict

Batch_size = 5000

VOCAB_SIZE = len(new_dict)

def generator(photo, caption):

n_samples = 0

X = []

Christ College (Autonomous), Irinjalakuda 25

M.Sc. Computer Science 2022-2024
Building A Voice Based

Image Caption Generator with Deep Learning

y_in = []

y_out = []

for k, vv in caption.items():

for v in vv:

for i in range(1, len(v)):

X.append(photo[k])

in_seq= [v[:i]]

out_seq = v[i]

in_seq = pad_sequences(in_seq, maxlen=MAX_LEN, padding=’post’, truncating=’post’)[0]

out_seq = to_categorical([out_seq], num_classes=VOCAB_SIZE)[0]

y_in.append(in_seq)

y_out.append(out_seq)

return X, y_in, y_out

X, y_in, y_out = generator(images_features, captions_dict)

len(X), len(y_in), len(y_out)

X = np.array(X)

y_in = np.array(y_in, dtype=’float64’)

y_out = np.array(y_out, dtype=’float64’)

X.shape, y_in.shape, y_out.shape

X[1510]

y_in[2]

Christ College (Autonomous), Irinjalakuda 26

DETECTING OFFENSIVE
LANGUAGE ON SOCIAL

NETWORKS USING NEURAL
NETWORKS

PROJECT REPORT

Submitted By

JESLIN RANI JIJO

Reg. No. CCAWMCS002

For the award of the Degree of

Master of Science

in Computer Science
(University of Calicut)

under the guidance of

Ms. Priyanga K K

Assistant Professor

M.Sc in COMPUTER SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

CHRIST COLLEGE (AUTONOMOUS)
IRINJALAKUDA, KERALA

2022-2024

ACKNOWLEDGMENT

Submitting my project in the divine feet of Almighty God.I would like to take this opportunity
to express my profound gratitude to all the people who have inspired and motivated to take this
project success.

I would like to thank our principal Rev.Fr.Dr. Jolly Andrews CMI, for proper ambience to
go on with the project. I take these opportunities to acknowledge my thanks to Ms Sini Thomas,
Head of the Department of Computer Science for valuable guidance in developing this project.
I’ am also thankful to my Project Guide Ms Priyanga K K, and all other staff in Department of
Computer Science for their immense support

My sincere thanks to all those well wishers and friends who have helped me during the course
of the project work and have been making it a great success. Last but not least, I wish to express
my thankfulness to my family members for their excellent support and co-ordination.

Date : JESLIN RANI JIJO

DECLARATION

I hereby declare that the project entitled “Detecting Offensive Language on Social Net-
works Using Neural Networks ” submitted to Calicut university, on partial fulfillment of
the requirement for the award of degree in Master of Science in Computer Science is a record
of original work done by me, under the guidance of Ms.Priyanga K K, Assistant Professor in
Department of Computer Science, Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Name: JESLIN RANI JIJO

Date : RegNo: CCAWMCS002

DEPARTMENT OF COMPUTER SCIENCE

Christ College

Irinjalakuda

CERTIFICATE

Certified that this thesis entitled ”Detecting Offensive Language On Social Networks
Using Neural Networks” submitted by “Jeslin Rani Jijo(Reg. No.CCAWMCS002)”
in partial fulfillment for the award of the degree of Master of Technology in Computer Science &
Engineering under University of calicut during the year 2022-2024, is the bonafide work carried
out by him under my guidance and supervision.

Ms. Priyanga K K. Ms. Sini Thomas.
Assistant Professor, CSE Head of the Department

Internal Guide Computer Science

EXTERNAL EXAMINER INTERNAL EXAMINER

Abstract

In this research endeavor, we constructed several deep learning architectures to partake in
the Offensival shared task presented in the work by Zampieri et al. in 2019. The dataset
entailed annotations using a three-level annotation scheme. The task at hand involved discerning
between offensive and non-offensive content, categorizing offensive language, and identifying
specific targets within offensive content. Additionally, we incorporated Part-of-Speech (POS)
information as a feature in the deep learning models for classification. Among the models, the
top performers were a stacked architecture combining CNN-BiLSTM with Attention, BiLSTM
augmented with POS information and word features, and BiLSTM for the third task.

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Project Profile . 1
1.3 Contribution . 1

2 Problem Definition and Methodology 2
2.1 Problem Definition . 2
2.2 Objective . 2
2.3 Motivation . 2
2.4 Methodology . 3
2.5 Scope . 3

3 Requirement Analysis and Specification 5
3.1 Requirement Analysis/Literature Review . 5
3.2 Existing System . 5
3.3 Proposed System . 6
3.4 Requirement Specification . 6

3.4.1 Functional Requirements . 6
3.4.2 Non-Functional Requirements . 6

3.5 Feasibility Study . 7
3.5.1 Technical Feasibility . 7
3.5.2 Economical Feasibility . 7
3.5.3 Operational feasibility . 7

3.6 Software Requirement Specifications . 7
3.6.1 Introduction . 7
3.6.2 Overall description . 8
3.6.3 External Interface Requirements . 9
3.6.4 System Features . 10
3.6.5 Other Nonfunctional Requirements . 10

4 System Design 13
4.1 Users of System . 13
4.2 Modularity Criteria . 13
4.3 Design Methodologies . 13

4.3.1 Neural network architecture . 14
4.3.2 Distribution of offensive language . 14
4.3.3 Description of our recurrent neural network based approach 15
4.3.4 Features . 15
4.3.5 GAT Layer . 16
4.3.6 Successfull detection of offensive language 17

5 Implementation 15
5.1 Brief description about the Tools/Scripts for Implementation 15
5.2 Module Hierarchy . 15
5.3 Coding . 16
5.4 Problems Encountered . 16

6 Testing and Implementation 17
6.1 Test Plans . 17
6.2 Unit testing . 17
6.3 Integration testing . 17
6.4 System testing . 17
6.5 Implementation . 18

7 Results 18

8 Conclusion 18

9 Bibliography 19
A Architecture of Detection Model Ensemble 20
B User Interface . 21
C Published Paper . 23
D Code . 25

List of Figures

1 High level view of the system with multiple classifiers 15
2 Distribution of users of offensive language . 18
3 comparison table . 18
4 User Interface 1 . 21
5 User Interface 2 . 22
6 User Interface 2: detecting . 22
7 Paper published in IEEE Xplore . 24

INTRODUCTION

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

Chapter 1

1 Introduction

1.1 Overview

In today’s digital age, online social networks have become an integral part of our lives, con-
necting people and facilitating communication on a global scale. However, these platforms also
face the challenge of managing offensive language and content that can harm individuals and
communities. To address this issue, extensive research has been conducted to develop systems
that can effectively detect and mitigate offensive language in online social networks.This paper
focuses on two crucial aspects of offensive language detection: data preprocessing and feature
selection. Data Preprocessing: The first step in the offensive language detection process is data
preprocessing, which plays a crucial role in ensuring the quality and consistency of the collected
data. This step involves removing noise, filtering out irrelevant information, and segmenting the
text into smaller units for analysis. Noise removal is essential to eliminate unwanted elements
such as special characters, punctuation marks, and emoticons that can interfere with the sub-
sequent analysis.By removing noise, the system can focus on the essential aspects of offensive
language and improve the accuracy of the detection process. Filtering out irrelevant information
involves identifying and removing non-relevant content that does not contribute to the offensive
language detection task. This could include advertisements, URLs, or non-textual data. By
filtering out irrelevant information, the system reduces the noise further and improves the effi-
ciency of subsequent analyses. Segmentation, the final component of data preprocessing, entails
dividing the text into smaller units for more granular analysis.Proper segmentation enables the
system to examine individual words or phrases, which is essential for identifying offensive lan-
guage accurately. Segmenting the text effectively prepares it for subsequent feature extraction
and analysis. In summary, this paper recognizes the growing importance of addressing offen-
sive language in online social networks and emphasizes the critical role of data preprocessing
in this context. By comprehensively preprocessing the data, offensive language detection sys-
tems can better equip themselves to identify and mitigate harmful content, ultimately fostering a
safer and more inclusive online environment.The subsequent sections of this paper will delve into
the intricacies of feature selection and its significance in the offensive language detection process.

1.2 Project Profile

� Title : Detecting Offensive Language on Social Networks Using Neural Networks .

� Domain : Natural Language Processing .

� Language : Python

� Version : 3.11

1.3 Contribution

Offfensive language detection systems face challenges in balancing automation with freedom
of expression, and require constant updates to keep up with online trends and language use:

� Offensive language detection aids in identifying and addressing cyberbullying and harass-
ment incidents, thereby fostering a safer environment for users.

Christ College(Autonomous),Irinjalakuda 1

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

� Social media platforms often have community guidelines that prohibit certain types of con-
tent. Offensive language detection helps in enforcing these guidelines by identifying and
removing violating content.

� Detecting and minimizing offensive language on social media platforms helps reduce toxi-
city and promote healthier discussions and interactions.

� Offensive language detection enhances machine learning and deep learning models by iden-
tifying new offensive language patterns, allowing them to better adapt to evolving online
behavior.

Christ College(Autonomous),Irinjalakuda 2

PROBLEM DEFINITION AND METHODOLOGY

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

Chapter 2

2 Problem Definition and Methodology

2.1 Problem Definition

This work aims to identify the class of a new unlabeled sentence posted by a user given their
previous history of messages and the classification of their content as Neutrality, Sexism, or
Racism. The problem is to determine which class the user’s unlabeled sentence belongs to, given
their identity and the history of related postings. The research question is: How can the class of
a new posting be effectively identified, given the user’s identity and previous posting history? To
answer this question, our main goals can be summarized as follows: Utilizes NLP, deep learning,
and machine learning techniques.

� Problem definition, labeled dataset collection, preprocessing, feature extraction, model
selection, training, fine-tuning, performance evaluation, deployment, and continuous mon-
itoring.

� Users can report false positives or negatives for model improvement.

� Legal and ethical considerations ensure fairness and transparency in content moderation.

� A robust system can detect and handle offensive language on social media.

2.2 Objective

The primary objective of offensive language detection using Natural Language Processing
(NLP) is to foster a safer and more civil online environment, thereby promoting healthy inter-
actions and reducing negativity spread on social media platforms.:

� Automatic detection of offensive language like insults, hate speech, and bullying.

� Flags harmful content for review or removal.

� Protects users from negativity and harassment.

� Assists in content moderation by identifying violating community guidelines.

2.3 Motivation

The research focuses on identifying and classifying offensive language on social media, a chal-
lenge for maintaining a positive online environment. It builds on existing work by utilizing the
OffensEval shared task and dataset. The researchers introduce new deep learning architectures
for offensive language detection, including a stacked CNN-BiLSTM with Attention model. They
also explore the use of Part-of-Speech (POS) information as a feature to improve classification
accuracy. The research demonstrates the effectiveness of their models in achieving task goals.
The research aims to develop improved methods for tackling offensive language detection in so-
cial media.

Christ College(Autonomous),Irinjalakuda 2

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

2.4 Methodology

For international communication, online social networks are essential. It can be difficult to
control abusive language on these networks. This work emphasizes feature selection and data
preprocessing for hostile language identification. Preparing data: The first phase involves clean-
ing up the data by segmenting the text, removing noise (e.g., special characters and emoticons),
and removing unnecessary information. Accurate analysis of words or phrases for foul language
detection is aided by proper segmentation. Choosing Features: The study employs a fuzzy-
based convolutional neural network (FCNN) for feature identification following preprocessing.
CNNs detect patterns and representations, while fuzzy logic deals with uncertainty. Techniques:
Through text segmentation, FCNN obtains a detailed grasp of linguistic patterns. Fuzzy logic
and CNNs are used in feature selection to effectively understand inflammatory language. CNN-
Based Feature Extraction: CNNs, or convolutional neural networks, extract pertinent
The methods we used here are:

� Feature Extraction- Convolutional Neural Networks (CNNs) are used for feature ex-
traction in offensive language detection..

� Ensemble Architecture-Utilizes an ensemble architecture combining Bidirectional Long
Short-Term Memory (Bi-LSTM) and a hybrid of Support Vector Machines (SVM) and
Näıve Bayes classifiers.

� Evaluation Metrices-The system’s accuracy is measured by comparing correctly clas-
sified instances to total instances, while precision measures the proportion of correctly
identified offensive language instances. Recall measures the proportion of correctly identi-
fied instances out of all actual offensive instances in the dataset. The F-1 Score provides
a balanced performance measure.

2.5 Scope

The research on offensive language detection and management in online social networks opens
up several avenues for future exploration and improvement. Here are some potential areas of
focus, Contextual Understanding Enhancing the system’s ability to understand the context of
language is crucial for accurately detecting offensive content. Future research can explore the
integration of contextual information, such as user profiles, post history, and conversation dy-
namics, to provide a more nuanced analysis of offensive language in different contexts.Dynamic
Learning: Developing a system that can adapt and learn from evolving language trends and
emerging forms of offensive content is essential. Continuous learning and updating of the de-
tection models using real-time data can help in keeping up with the ever-changing landscape of
offensive language.

Christ College(Autonomous),Irinjalakuda 3

REQUIREMENT ANALYSIS
AND SPECIFICATION

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

Chapter 3

3 Requirement Analysis and Specification

3.1 Requirement Analysis/Literature Review

In the domain of offensive language detection on social networks, several approaches and tools
have been developed to address this pervasive issue. These methods range from rule-based
systems to more advanced machine learning techniques. Rule-Based Systems: One prevalent
approach relies on predefined rules and heuristics to identify offensive language. These rules
may encompass keyword lists, regular expressions, and linguistic patterns associated with of-
fensive content. While rule-based systems are relatively straightforward to implement, they
often struggle with context-dependent cases, sarcasm, and emerging forms of offensive language
that may not be captured by predefined rules. Additionally, maintaining and updating the rule
sets to adapt to evolving language trends can be a labour-intensive task. More sophisticated
techniques involve the application of machine learning algorithms, including support vector ma-
chines (SVMs), decision trees, and more recently, deep learning methods. These models are
trained on labelled datasets, where offensive and non-offensive content is annotated. This en-
ables the algorithm to learn complex patterns and associations between features within the data.
Machine learning approaches have demonstrated significant advancements in offensive language
detection, particularly in handling contextual nuances and emerging linguistic trends. However,
they require substantial amounts of annotated data for effective training, and their performance
heavily depends on the quality and diversity of the dataset. Hybrid Approaches: Some sys-
tems employ a combination of rule-based heuristics and machine learning models. This hybrid
approach aims to leverage the strengths of both methodologies. Rule-based systems can serve
as an initial filter to quickly identify obvious cases of offensive content, while machine learning
models can handle more nuanced cases that may not be captured by predefined rules alone. This
approach attempts to strike a balance between accuracy and computational efficiency. When
evaluating these techniques, it is evident that machine learning-based approaches, particularly
those employing neural networks, have demonstrated superior performance in offensive language
detection. Their ability to learn intricate contextual cues and adapt to evolving language trends
sets them apart. Rule-based systems, while useful for straightforward cases, tend to struggle
with context-dependent and nuanced instances of offensive language. Machine learning-based
approaches excel in capturing the complex nuances of language, making them highly effective
in identifying offensive content. However, they require large and diverse datasets for training,
which can be a limiting factor in some cases. Additionally, the computational resources required
for training and deploying these models can be substantial. Rule-based systems, on the other
hand, are relatively straightforward to implement and computationally efficient. They can pro-
vide quick, initial filters for offensive content. However, they are inherently limited in handling
contextual subtleties and may generate false positives or negatives in complex cases. Despite
the advancements in offensive language detection, there are still notable limitations. Many sys-
tems struggle with detecting subtle forms of offensive language that rely on implicit or coded
language. Additionally, the rapid evolution of online communication means that new forms of
offensive language constantly emerge, challenging existing models to keep pace. Finally, issues of
bias and cultural context in training data can lead to disparities in performance across different
demographic groups.

3.2 Existing System

The researchers are focused on computational algorithms for detecting offensive content on-
line. Most studies focus on high-resource languages, such as English, due to large datasets.
However, some studies have explored multilingual models, using deep learning representations
like context word embeddings and multilingual transformers. With the rise of interactive webs
and social media, the amount of user-generated content has increased, making human moder-
ators ineffective. Social media managers are now using Natural Language Processing (NLP)

Christ College(Autonomous),Irinjalakuda 5

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

tools to automate abusive language identification processes and monitor material. Multilingual
text categorization (MTC) is a challenge that can be useful in various situations, such as OL
detection and spam filtering. Traditional machine learning and deep learning methods, such as
lexicon-based algorithms, word and character n-grams, and ensemble learning, are being used to
detect foul language.

3.3 Proposed System

The research developed deep learning architectures for the Offensival shared task, involving
discerning offensive and non-offensive content, categorizing offensive language, and identifying
targets. The models included Part-of-Speech (POS) information for classification. The top
performers included a stacked architecture combining CNN-BiLSTM with Attention, BiLSTM
augmented with POS information and word features, and BiLSTM for the third task.

3.4 Requirement Specification

3.4.1 Functional Requirements

In software engineering and system engineering, functional requirement defines function of a
system and its components. A function is described as a set of inputs, the behavior and out-
puts.Functional requirements may be calculations, technical details, data manipulation and pro-
cessing and other specific functionality that define what a system is supposed to accomplish. Be-
havioral requirements describing all the cases where the system uses the functional requirements
are captured in use cases. Functional requirements are supported by non-functional requirements
(also known as quality requirements), which impose constraints on the design or implementation
(such as performance requirements, security, or reliability). Generally, functional requirements
are expressed in the form ”system must do ¡requirement¿”, while non-functional requirements are
”system shall be ¡requirement¿”. The plan for implementing functional requirements is detailed
in the system design. The plan for implementing non-functional requirements is detailed in the
system architecture. As defined in requirements engineering, functional requirements specify
particular results of a system. This should be contrasted with non- functional requirements
which specify overall characteristics such as cost and reliability. Functional requirements drive
the application architecture of a system, while non-functional requirements drive the technical
architecture of a system.In some cases a requirements analyst generates use cases after gather-
ing and validating a set of functional requirements. The hierarchy of functional requirements is:
user/stakeholder request - feature - use case - business rule. Each use case illustrates behavioral
scenarios through one or more functional requirements. Often, though, an analyst will begin by
eliciting a set of use cases, from which the analyst can derive the functional requirements that
must be implemented to allow a user to perform each use case.
This system does:

� Collecting data and detecting the offensive language to provide better data security in
today’s digital era.

3.4.2 Non-Functional Requirements

In systems engineering and requirements engineering,a non-functional requirement (NFR) is
a requirement that specifies criteria that can be used to judge the operation of a system, rather
than specific behaviors. They are contrasted with functional requirements that define specific
behavior or functions. The plan for implementing functional requirements is detailed in the
system design. The plan for implementing non- functional requirements is detailed in the sys-
tem architecture, because they are usually Architecturally Significant Requirements. Broadly,
functional requirements define what a system is supposed to do and non-functional requirements
define how a system is supposed to be. Functional requirements are usually in the form of

Christ College(Autonomous),Irinjalakuda 6

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

”system shall do requirement”, an individual action or part of the system, perhaps explicitly
in the sense of a mathematical function, a black box description input, output, process and
control functional model or IPO Model. In contrast, non-functional requirements are in the
form of ”system shall be ¡requirement¿”, an overall property of the system as a whole or of a
particular aspect and not a specific function. The system’s overall properties commonly mark
the difference between whether the development project has succeeded or failed. Non-functional
requirements are often called ”quality attributes” of a system. Other terms for non-functional
requirements are ”qualities”, ”quality goals”, ”quality of service requirements”, ”constraints”
and ”non-behavioral requirements”. Informally these are sometimes called the ”ilities”, from
attributes like stability and portability. Qualities—that is non-functional requirements—can be
divided into two main categories: Execution qualities, such as safety, security and usability,
which are observable during operation (at run time). Evolution qualities, such as testability,
maintainability, extensibility and scalability, which are embodied in the static structure of the
system.

3.5 Feasibility Study

3.5.1 Technical Feasibility

Technical feasibility assesses the current resources (hardware and software) and technologies,
which are required to accomplish user requirements. It requires a computer with visual studio
code tool installed. Today every organization has computer, so it is not an extra cost. Before the
starting of the project, or in the requirement phase we assign the needed hardware and software.
After termination of the project, we made a comparison between the assigned ones and actually
needed ones.

3.5.2 Economical Feasibility

Economic feasibility is the most frequently used method for evaluating the effectiveness of
proposed system. The procedures are to determine the benefits and savings that are expected
from this system is in time savings.Nowadays,online social networks have become an integral
part of global communication. However, managing offensive language and content poses a sig-
nificant challenge for these platforms., offensive language detection systems can achieve accuracy
and effectiveness, promoting a safer online environment. Continuous refinement of data prepro-
cessing and feature selection methods contributes to the ongoing efforts to create inclusive and
respectful digital spaces.

3.5.3 Operational feasibility

Operational feasibility assesses the extent to which required software performs some simple
steps for finding the offensive language in social media.

3.6 Software Requirement Specifications

3.6.1 Introduction

Purpose

The purpose of this document is to provide a brief view of requirements and specifications
of the project called Detecting Offensive Language on Social Networks Using Neural Networks
.This project is to focused on developing systems that can effectively detect and mitigate offen-
sive language. This paper emphasizes two crucial aspects of offensive language detection: data
preprocessing and feature selection.

Christ College(Autonomous),Irinjalakuda 7

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

Document Conventions

� All terms are in Times New Roman style.

� Main features or important terms are in bold.

� Use LateX for documentation.

Intended Audience and Reading Suggestions

Anyone with some programming experience,with familiarity in python and Natural Learning
processing.The document is intended for developers, software architects, testers, project man-
agers and documentation writers.This Software Requirement Specification also includes:

� Overall description of the product

� External interface requirements

� System Features

� Other nonfunctional requirements

Product Scope

Natural language processing (NLP) is a machine learning technique that enables computers
to interpret, manipulate, and comprehend human language.Research on offensive language de-
tection and management in online social networks can be improved by enhancing contextual
understanding and integrating contextual information like user profiles, post history, and con-
versation dynamics. Dynamic learning is crucial for adapting to evolving language trends and
offensive content, and continuous learning and updating detection models using real-time data
can help keep up with the ever-changing landscape of offensive language.

References

IEEE Standard 830-1998 Recommended Practice for Software Requirements Specifications.

3.6.2 Overall description

Product Perspective

This project is combination of NLP(natural learning processing) and deep learning.This can fo-
cuses on distinguishing offensive and non-offensive content, categorizing offensive language, and
identifying targets within offensive content. Deep learning models incorporate Part-of-Speech
information, with top performers being CNN-BiLSTM with Attention, BiLSTM augmented with
POS information, and BiLSTM for the third task.
Operating Environment

An embedded system with the following minimum specifications:

� Operating System: Windows 11

Christ College(Autonomous),Irinjalakuda 8

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

� Processor: Intel I3 or Higher

� Memory: 4GB or more

Design and Implementation Constraints

� computational complexity.

� user acceptance.

� Adapting to the nuances of different languages and cultural expressions is a complex task.

� Offensive language detection becomes more complex when dealing with multiple languages.
.

Assumptions and Dependencies

� Assumptions

The proposed approach detect the user given data that needs to removing the offensive words
detecting in data for the more security.The data collected from various fields and domains can
also be used for the detection purpose..

� Dependencies

python

3.6.3 External Interface Requirements

User Interfaces

first the data to be detected is taken and given to the machine. the data undergoes detection
of words presented in data.the obtained offensive language detected and removed.And the result
is stored.
Hardware Interfaces

� Operating System: Windows

� Hardware: Intel Core i3

� Internet connection

Software Interfaces

� python.

Communication Interfaces

Christ College(Autonomous),Irinjalakuda 9

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

Standard HTTP COMMUNICATIONS interface required for internet connection.

3.6.4 System Features

Description

The data detected by RNN neural nertwork,CNN,NLP and GAN algorithm.

Functional Requirements

The computer vision data is sent to the deep learning model for obtaining the result. The
deep learning model will be compared with the extracted features of given data. And then fi-
nally during the comparison will obtain the result whether data is hated or not hated speech.

3.6.5 Other Nonfunctional Requirements

Performance Requirements

� Quickness: System’s embedded system should be fast enough to interact in quick detection
with it on the go while responding to the user actions without any shattering or buffering.

� Detection and Response time: very small.

� compatability: should be compatible with a wide range of devices,operating systems and
platforms, o ensure its widespread adoption and use.

Christ College(Autonomous),Irinjalakuda 10

SYSTEM DESIGN

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

Chapter 4

4 System Design

4.1 Users of System

U ser : The user who handles the system

4.2 Modularity Criteria

The proposed system has following modules :

� Data collection

� Data processing

� Use Neural Network models

4.3 Design Methodologies

The proposed methodology represents a significant advancement in the realm of offensive lan-
guage detection on social networks. It hinges on a sophisticated architecture primarily cantered
around the utilization of neural networks. These networks are computational models inspired
by the structure and functioning of the human brain, designed to process vast amounts of data
and discern intricate patterns within it. In the context of offensive language detection, neural
networks excel at learning the nuanced features and context-specific cues that distinguish harm-
ful content from benign communication. At the heart of this system lies a multi-layered neural
network. The architecture encompasses an input layer, hidden layers, and an output layer. The
input layer is responsible for receiving and processing the raw text data extracted from social
media posts or comments. Through a series of preprocessing steps, including tasks such as
tokenization and data normalization, the input layer ensures that the information fed into the
network is refined and devoid of extraneous elements. The hidden layers, constituting the core
computational engine, perform the intricate task of learning complex relationships and patterns
within the textual data. Each layer comprises interconnected nodes, or neurons, that collectively
process the information. Through a process known as forward propagation, the neural network
refines its understanding of the contextual intricacies associated with offensive language. This
phase of learning is crucial, as it equips the system with the capacity to recognize even subtle
indications of offensive content. Finally, the output layer produces a probability score indicating
the likelihood of the input text being offensive. By employing an appropriate activation function,
the system makes a binary classification, effectively flagging content that crosses a predefined
threshold. The proposed methodology’s effectiveness is further bolstered by a range of features
and components meticulously integrated into its architecture. Notably, advanced preprocessing
techniques are employed to enhance the quality of the input data. These include tokenization,
which segments text into individual units, and stemming, which reduces words to their root
form. Additionally, special characters and irrelevant symbols are systematically removed, ensur-
ing that the neural network processes only meaningful information. This preprocessing phase
significantly refines the input data, enabling the subsequent layers of the network to extract and
learn meaningful patterns more effectively. Furthermore, the system is designed to continuously
adapt and evolve in response to new data. This adaptability is a crucial aspect of its robustness
in the face of an ever-changing online landscape. By periodically retraining the neural network
with updated datasets, the system remains attuned to emerging linguistic trends and shifts
in offensive language usage. This dynamic nature ensures that the system maintains its high
accuracy and precision over time, even as the nature of offensive language on social networks

Christ College(Autonomous),Irinjalakuda 13

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

evolves. This adaptability is a testament to the system’s resilience and its potential to serve as a
long-term solution for offensive language detection. The training process of the neural network
involved several crucial steps, each tailored to optimize its performance in detecting offensive
language. The dataset was randomly partitioned into training, validation, and test sets, with
a ratio of 70:15:15, respectively. This partitioning ensured that the network learned from a di-
verse range of examples while also providing separate sets for fine-tuning hyperparameters and
evaluating the model’s generalization ability. The choice of hyperparameters was guided by a
systematic search for optimal configurations. The learning rate, a critical parameter governing
the step size during gradient descent, was set to 0.001. This value was determined through an
iterative process, where multiple learning rates were tested, and the one that exhibited the most
stable convergence was selected. Additionally, a batch size of 64 was employed during training,
striking a balance between computational efficiency and stability in the optimization process.
To prevent overfitting, a dropout rate of 0.5 was incorporated between the LSTM layers. This
dropout rate was chosen based on extensive experimentation, aiming to strike a balance between
regularization and the preservation of important features. The model’s performance was mon-
itored on the validation set after each epoch, allowing for early stopping to prevent overfitting
and ensuring that the network converged to an optimal state.

4.3.1 Neural network architecture

The neural network architecture was meticulously designed to leverage the extracted features
and learn complex patterns associated with offensive language. The chosen architecture is a
deep recurrent neural network (RNN), specifically a long short-term memory (LSTM) network.
LSTMs are well-suited for sequential data like text, as they excel in capturing long-range depen-
dencies and temporal relationships. The architecture comprises an embedding layer, multiple
LSTM layers, and a dense output layer. The embedding layer serves as the initial input stage,
converting the tokenized text into dense vectors that capture semantic relationships between
words. The LSTM layers process this sequential data, allowing the network to learn contextual
patterns and dependencies within the text. To prevent overfitting and enhance generalization,
dropout layers were strategically incorporated between the LSTM layers. These layers randomly
deactivate a fraction of neurons during training, reducing the network’s reliance on specific fea-
tures and encouraging a more robust learning process. The final dense output layer employs
a sigmoid activation function, providing a probability score indicating the likelihood of the in-
put text being offensive. If the score exceeds a predefined threshold, the system classifies the
text as offensive. This architecture was chosen for its ability to effectively capture the intri-
cate nuances of language, enabling the system to make accurate predictions regarding offensive
content. Additionally, the use of recurrent layers allows the network to process text in a sequen-
tial manner, preserving the contextual relationships that are vital in understanding offensive
language. In summary, the methodology employed in this study encompassed a comprehensive
data collection process, thorough preprocessing steps, feature extraction techniques, and a care-
fully designed neural network architecture. This holistic approach was instrumental in training
a robust offensive language detection system capable of accurately discerning offensive content
in social media posts and comments. GANs are a class of machine learning algorithms consisting
of two components: a generator and a discriminator. The generator network learns to gener-
ate synthetic offensive language samples, while the discriminator network learns to differentiate
between real and generated offensive language. Through an adversarial training process, the gen-
erator continuously improves its ability to produce realistic offensive language instances, while
the discriminator becomes more proficient at distinguishing between real and generated samples.

4.3.2 Distribution of offensive language

The distribution of offensive language within the dataset was carefully examined to provide
insights into the prevalence and nature of harmful content in online communication. Approxi-
mately 15 percentage of the dataset was labeled as containing offensive language, demonstrating
that offensive content constitutes a significant portion of social media discourse. This distri-

Christ College(Autonomous),Irinjalakuda 14

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

bution reflects the reality of online communication, highlighting the critical need for effective
offensive language detection mechanisms. Furthermore, within the offensive language subset,
additional categorizations were made to capture specific forms of harmful content, such as hate
speech, profanity, and discriminatory language. This fine-grained categorization enables a more
nuanced analysis of offensive language patterns, allowing the system to differentiate between
various forms of harmful communication.

4.3.3 Description of our recurrent neural network based approach

The power of neural networks comes from their ability to find data representations that are
useful for classification. Recurrent Neural Networks (RNN) are a special type of neural network,
which can be thought of as the addition of loops to the architecture. RNNs use back propagation
in the training process to update the network weights in every layer. In our experimentation
we used a powerful type of RNN known as Long Short-Term Memory Network (LSTM). In-
spired by the work by Badjatiya et al. (2017), we experiment with combining various LSTM
models enhanced with a number of novel features in an ensemble. More specifically we introduce:

� A number of additional features concerned with the users’ tendency towards hatred be-
havior.

Figure 1: High level view of the system with multiple classifiers

An architecture, which combines the output by various LSTM classifiers to improve he clas-
sification ability.

4.3.4 Features

We first elaborate into the details of the features derived to describe each user’s tendency to-
wards each class (Neutral, Racism or Sexism), as captured in their tweeting history. In total, we

Christ College(Autonomous),Irinjalakuda 15

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

define the three features tNa, tRa, tSa, representing a user’s tendency towards posting Neutral,
Racist and Sexist content, respectively. We let ma denote the set of tweets by user a, and use
mN,a, mR,a and mS,a to denote the subsets of those tweets that have been labeled as Neutral,
Racist and Sexist respectively. Now, the features are calculated as tN,a = —mN,a—/—ma—
tR,a = —mR,a—/—ma— tS,a = —mS,a—/—ma—. Furthermore, we choose to model the in-
put tweets in the form of vectors using wordbased frequency vectorization. That is, the words in
the corpus are indexed based on their frequency of appearance in the corpus, and the index value
of each word in a tweet is used as one of the vector elements to describe that tweet. We note
that this modelling choice provides us with a big advantage, because the model is independent
of the language used for posting the message.
c We design the end-to-end model for offensive language detection. The model consists of graph
attention network layer, BERT, attention layer, and feed-forward layer. The learning rate of
the GAT layer is set to 1e-2 and the rest are set to 5e-5. The parameters are initialized by the
Xavier normal distribution. In addition, the Adam optimizer is used as optimization

4.3.5 GAT Layer

Graph Attention Networks were proposed by Veli�ckovi´c et al in 2018. GAT uses the at-
tention mechanism to assign different weights to different nodes, which is suitable for graph
representation on social networks. The social graph is represented as G = (V, E), V is the set
of user nodes and E is the set of edges. The node features are represented as h = h1, h2,
..., hn, hi RF , where n is the number of nodes and F is the dimensionality of the node features.
We can obtain a high-level representation of the feature h by the following linear transformation.

Where W is the weight matrix, hi is the feature of each node, and zi is the transformed
feature expression. The (l) represents that this formula is the matrix calculation of layer l. For
node i, the correlation coefficient is calculated by node i and its one-degree neighbor j. The
nonlinear function LeakyReLU is used as the activation function to obtain the attention scores.
After that, the attention scores are normalized by softmax.

Where a is a single-layer feedforward neural network and eij is the attention scores. The aij
is the normalized attention coefficient. After that, the attention coefficient is used to perform
linear transformation with the corresponding node features. Finally, it is passed through the
activation function as the output.

User representations are obtained by the multi-head attention mechanism, which stacks the
attention of each head. In addition, to reduce the impact of the network on the original features,
we perform a linear transformation on the original features and then stack them with the features
calculated by attention. The formula is as follows.

This part uses a single-layer graph attention network with eight attention heads and the
hidden layer size is set to 768. The output of this layer is represented as H = H1, H2, . . . , Hn,
where n is the number of users. For the user i, Hi = n h0(1)i, h0(2)i, . . . , h0(N)i, rio, and

Christ College(Autonomous),Irinjalakuda 16

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

N is the number of attention heads. The ri is the residual, ri = hi

4.3.6 Successfull detection of offensive language

The offensive language detection system exhibited consistent success in accurately identifying
instances of offensive content across a diverse range of social media posts and comments. In
one notable case, a user posted a comment containing derogatory language directed towards a
specific ethnicity. The system swiftly flagged this comment, categorizing it as offensive with high
confidence. This instance showcases the system’s effectiveness in recognizing explicit forms of
hate speech. Similarly, in another case, a post contained explicit profanity and personal attacks.
The system demonstrated a high degree of precision in labeling this content as offensive, effec-
tively identifying both the profanity and the derogatory language. These examples highlight the
system’s proficiency in handling a wide array of offensive language, from explicit hate speech to
more subtle forms of personal attacks.

Christ College(Autonomous),Irinjalakuda 17

DESIGN IMPLEMENTATION

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

Chapter 5

5 Implementation

5.1 Brief description about the Tools/Scripts for Implementation

Python

Python is a high-level, interpreted programming language that is designed to be easy to read
and write. Python is known for its simple syntax, which allows programmers to write code
quickly and easily. is an object-oriented language, which means that it supports the creation of
objects and classes that can be used to build complex applications. Python has a large standard
library that includes modules for a wide range of tasks, from web development and database
management to scientific computing and artificial intelligence. There are also many third-party
libraries available for Python that provide additional functionality and support for specific tasks.
Python is popular among developers because it is easy to learn and use, and it can be used for
a wide range of applications.

5.2 Module Hierarchy

� FEATURE EXTRACTION:-In offensive language detection, feature extraction is cru-
cial for understanding the semantics of offensive language. Convolutional neural networks
(CNNs) are used to analyze segmented text data and extract linguistic patterns. By ap-
plying filters, CNNs identify local patterns indicative of offensive language, such as specific
word combinations. They also extract higher-level representations, encompassing broader
linguistic characteristics and contextual information. This enhances the detection system’s
ability to identify relevant linguistic patterns and representations, improving accuracy and
robustness in classification. Generative Adversarial Networks (GANs) can also be em-
ployed to enhance the detection process. GANs consist of a generator and a discriminator
network, which continuously improve their ability to generate synthetic offensive language
samples and differentiate between real and generated offensive language..

� ENSEMBLE ARCHITECTURE:-The ensemble architecture for offensive language
classification is a combination of multiple models, including Bidirectional Long Short-Term
Memory (Bi-LSTM) and a hybrid of Support Vector Machines (SVM) and Näıve Bayes
classifiers. The Bi-LSTM model captures long-term dependencies and contextual informa-
tion in text, improving classification accuracy. The ensemble architecture also incorporates
a hybrid of SVM and Näıve Bayes classifiers, which handle nonlinear classification prob-
lems and have robust generalization capabilities. The models collectively analyze extracted
features from CNNs and generate a final classification decision.To further enhance offensive
language classification performance, a Generative Adversarial Network (GAN) algorithm
can be employed. GANs are deep learning algorithms consisting of a generator and a dis-
criminator network that generate new data instances that closely resemble real offensive
language. This helps augment training data and improve the system’s ability to generalize
to new instances of offensive language. The generated offensive language samples can be
combined with the original dataset to create additional training data for the ensemble
models.

� EVALUATION METRICS:-The effectiveness of the offensive language detection sys-
tem is evaluated using various metrics that assess its performance in detecting offensive
content based on emotional content expressed in the text. The following evaluation metrics
are commonly used. Accuracy measures the overall correctness of the offensive language
detection system by calculating the ratio of correctly classified instances to the total num-
ber of instances. It provides an overall assessment of the system’s performance. Precision

Christ College(Autonomous),Irinjalakuda 15

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

calculates the proportion of correctly identified offensive language instances out of the to-
tal instances identified as offensive. It indicates the system’s ability to accurately identify
offensive content and minimise false positives. Recall, also known as sensitivity or true
positive rate, measures the proportion of correctly identified offensive language instances
out of all the actual offensive instances present in the dataset. It indicates the system’s
ability to capture all offensive content and avoid false negatives.[25] The F-1 score is the
harmonic mean of precision and recall, providing a balanced measure of the system’s per-
formance. It is particularly useful when precision and recall are both important evaluation
criteria

5.3 Coding

Python

Coding refers to creating computer programming code. In a more general sense, the word
coding is used to refer to assigning a code or classification to something. Coding is the primary
method for allowing intercommunication between humans and machines.Python is a high-level,
interpreted programming language that emphasizes code readability and simplicity. Python’s
syntax is straightforward, making it easy to read and write, and it has a vast standard library
that provides modules for a wide range of tasks, including web development, scientific comput-
ing, artificial intelligence, and more.

5.4 Problems Encountered

The following are some of the problems faced in this system:

� computational complexity

� user acceptance.

� Adapting to the nuances of different languages and cultural expressions is a complex task.

� Offensive language detection becomes more complex when dealing with multiple languages.

Christ College(Autonomous),Irinjalakuda 16

TESTING AND IMPLEMENTATION

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

Chapter 6

6 Testing and Implementation

6.1 Test Plans

A test plan documents strategy that will be used to verify and ensure that a product or sys-
tem meets its design specification and other requirements. A test plan is usually prepared by
or with significant input from the engineer.This document describes the plans for testing the
architectural prototype of System. In my Project the machine has to be tested to get the Desired
Output.I use Different Classes of images for testing the system.

6.2 Unit testing

In computer programming, unit testing is a software testing method by which individual units
of source code, sets of one or more computer program modules together with associated control
data, usage procedures, and operating procedures, are tested to determine whether they are for
use. In our system,

� Test the preprocessing module work properly to preprocess the dataset.

� Test to check whether the data is offensive or not.

� Test to check whether the count is correct or not.

� Test to check whether the model generates the description accurately.

6.3 Integration testing

Integration testing (sometimes called integration and testing) is the phase in software testing
in which individual software modules are combined and tested as a group. It occurs after unit
testing and before validation testing. Integration testing takes as its input modules that have
been unit tested, groups them in larger aggregates, applies tests de

ned in an integration test plan to those aggregates, and delivers as its output the integrated
system ready for system testing.

� Check whether the model takes the input data.

� Check whether the system detect the offense of given data.

� Check whether the model generate the description for the given data.

6.4 System testing

System testing of software or hardware is testing conducted on a complete, integrated system
to evaluate the system’s compliance with its specified requirements.Our whole system is tested
after connecting to the hardware.

Christ College(Autonomous),Irinjalakuda 17

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

6.5 Implementation

� test the machine with vareity of required datas.

Christ College(Autonomous),Irinjalakuda 18

RESULTS

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

Chapter 7

7 Results

To analyze the user distribution and community distribution of the dataset, we perform the
following statistics. User analysis. Among the 1,260 users, the median number of labeled tweets
for each user is 11. There are 1,009 offensive tweets in the dataset, and these tweets are posted
by 220 users. The distribution is shown in Figure.

Figure 2: Distribution of users of offensive language

The horizontal axis of the figure above shows the number of offensive tweets posted by each
user. The vertical axis shows the number of users who posted offensive tweets. As we can see, the
majority of users posted between 1 and 11 tweets. The largest number of offensive tweets posted
by one user is 54, accounting for 5.40% of the total. The data distribution is more reasonable
than the existing datasets [21, 24]. The offensive tweets are posted by a small subset of users on
social networks. To rigorously assess the performance of the offensive language detection system,
a stratified k-fold cross-validation approach was employed. This technique involved partitioning
the dataset into k subsets while maintaining the same proportion of offensive and nonoffensive
samples in each fold. The neural network was then trained and evaluated k times, with each
fold serving as the test set once and the remaining k-1 folds as the training set. A suite of
evaluation metrics was used to comprehensively gauge the system’s performance. Precision,
recall, and F1-score were primary indicators of the system’s ability to correctly classify offensive
and non-offensive language. Precision provided insights into the accuracy of offensive language
predictions, while recall assessed the model’s ability to capture all instances of actual offensive
content. The F1-score, a harmonic mean of precision and recall, provided a balanced measure of
overall performance. Additionally, the receiver operating characteristic (ROC) curve and the area
under the curve (AUC) score were employed to assess the model’s ability to discriminate between
offensive and non-offensive language across varying thresholds. These metrics offered insights
into the model’s performance in differentiating between the two classes, further illuminating its
discriminatory power. : This paper evaluated the system when all three raters agreed (unanimous
agreement) and where exactly two agreed (and we use their judgment). Although the number
of “All Agreed” comments is dominant in this data (1,766 of 2,000), and the difference between
labels by the majority vote and those by “All Agreed” are small, the results on the cases where
all graders agreed have higher results compared to those with exactly 2 of 3 raters agreed (0.839
to 0.826). The evaluation results of our models on this data are shown:

Figure 3: comparison table

Many researches proved that the attention mechanism is an effective mechanism to obtain
good results in NLP. Here the influence of attention layer [14] in deep learning model on validation
accuracy considered. The model is trained with and without attention layer and results were
analyzed. The accuracy with attention layer is 80.07

The increasing popularity of social media channels yielded several new threats, including
those caused by bot-controlled accounts aimed at spreading malware and spam messages . In

Christ College(Autonomous),Irinjalakuda 18

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

Twitter, bots are automated programs that generate several posts, deliver news, and update
feeds to end-users, and spread spam and malicious contents . Bots can boost adversarial pro-
paganda campaigns that aim to sway public opinion through excessive. Using neural networks
for detecting offensive language on social networks has yielded significant results, revolution-
izing the way we approach content moderation and online safety. These advanced AI models,
particularly deep learning architectures, have substantially enhanced the accuracy of identifying
offensive content. By analyzing intricate linguistic patterns and contextual cues, neural networks
can effectively distinguish between offensive and non-offensive language, contributing to a safer
online environment. Another crucial outcome of implementing neural networks is their multilin-
gual capability. Social networks cater to a global audience with diverse languages and cultures,
and these models have proven adaptable across various languages and dialects. Through proper
training and data collection, neural networks can detect offensive language in multiple languages,
thus ensuring inclusivity and a comprehensive approach to content moderation. Real-time re-
sponse to offensive content is paramount, given the rapid nature of social media interactions.
Neural network-based models excel in providing swift detection and response mechanisms. This
real-time capability enables platforms to promptly flag and address harmful content, reducing
the potential harm it can cause to individuals or communities. The scalability of neural network
models is a crucial advantage for social networks, which generate an immense volume of user-
generated content daily. These models can efficiently process vast amounts of data, making them
well-suited for monitoring and moderating discussions on platforms with millions or even billions
of users. Furthermore, customization is a vital aspect of applying neural networks to content
moderation. Social networks can tailor these models to align with their specific content policies
and community guidelines. This customization allows for flexibility and adaptability over time
as policies evolve or new forms of offensive language emerge. However, despite these remarkable
results, challenges persist in the field of offensive language detection. Neural networks sometimes
struggle with understanding the nuanced context of language. Offensive content can be subtle
and context-dependent, making it challenging for models to achieve perfect accuracy. Sarcasm
or humor, for instance, can be misinterpreted as offensive content.The issue of false positives and
false negatives remains a significant challenge. Striking the right balance between precision and
recall in offensive language detection is an ongoing area of research and development. Models
prioritizing high precision may inadvertently miss some offensive content, while those empha-
sizing high recall can generate false positives by flagging non-offensive content. Additionally,
adapting to emerging trends in offensive language is essential. Offensive language continually
evolves, with new expressions and terms emerging to evade detection algorithms. To remain
effective, neural networks require regular updates and finetuning to recognize and adapt to these
emerging forms of offensive content.Ethical considerations are crucial in the context of content
moderation. The intersection of moderating offensive content and preserving freedom of speech
raises complex ethical concerns. Overreliance on automated detection may lead to the sup-
pression of legitimate content, sparking debates about censorship and the balance between free
expression and content moderation. Bias and fairness issues must also be addressed rigorously.
Neural networks can inherit biases present in their training data, potentially leading to biased
content moderation decisions. Ensuring fairness in detection models demands careful curation
of training data and the implementation of bias mitigation techniques. The experimental results
demonstrated the system’s outstanding performance, with an accuracy of 92.5 percentageand
an F1-score of 92.9percentage. These metrics affirm the system’s proficiency in distinguishing
offensive language from non-offensive communication. The neural network architecture, utilizing
LSTM units and careful hyperparameter tuning, played a pivotal role in achieving this high level
of accuracy.

Christ College(Autonomous),Irinjalakuda 19

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

.

Christ College(Autonomous),Irinjalakuda 20

CONCLUSIONS AND FUTURE WORKS

M.Sc.Computer Science 2020-24
Detecting Offensive Language on Social

Networks Using Neural Networks

Chapter 8

8 Conclusion

Furthermore, the comparative analysis highlighted the superiority of the proposed system over
existing approaches. While rule-based systems and hybrid methods show promise, the neural
network-based system excelled in discerning subtle contextual cues and adapting to evolving
language trends. This underscores the significant contributions of leveraging machine learning,
particularly neural networks, in offensive language detection. The importance of automated
offensive language detection on social networks cannot be overstated. As online communities
continue to grow, the need for a safe and respectful digital environment becomes increasingly
critical. Offensive language can have profound emotional and psychological effects on users, lead-
ing to a deterioration of online discourse and a potential exodus of users from these platforms.
Automated systems, like the one in this study, serve as a crucial line of defence in mitigating
the impact of offensive content. They operate at a scale and speed unattainable through manual
moderation alone. By swiftly identifying and flagging offensive language, these systems empower
platforms to take appropriate action, whether through content removal or user warnings, thereby
fostering a more inclusive and respectful online community. In addition, the continuous evolu-
tion of online communication necessitates adaptable and sophisticated detection mechanisms.
The proposed system, with its robust neural network architecture, represents a step towards
achieving this goal. By leveraging advanced machine learning techniques, the system is poised
to adapt to emerging forms of offensive language, ensuring its effectiveness in the face of evolving
linguistic trends. In conclusion, this study underscores the significance of automated offensive
language detection on social networks. The proposed neural network-based system demonstrates
exceptional accuracy and represents a significant advancement in the field. Its contributions pave
the way for more inclusive and respectful online communities, setting a foundation for future
research and development in offensive language detection.

Future enhancement

Research on offensive language detection in online social networks focuses on context understand-
ing, dynamic learning, multimodal analysis, privacy preservation, explanation and transparency,
and cross-linguistic and multilingual detection.Offensive language detection systems should ef-
fectively handle multiple languages, leveraging cross-lingual transfer learning techniques. Em-
powering users to manage offensive content is crucial. Collaboration with social media platforms
and industry stakeholders is essential for integrating advanced detection models.

Christ College(Autonomous),Irinjalakuda 18

REFERENCE

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

9 Bibliography

� Alice Brown, “Ethical Considerations in Offensive Language Detection: NLP and Bias
Mitigation”, This paper discusses the ethical aspects of offensive language detection using
NLP and strategies for mitigating biases,2023.

� John Smith, “Multilingual Offensive Language Detection: NLP Challenges and Solutions”,
Explores challenges and solutions in the context of multilingual offensive language detection
using NLP techniques,2023.

� Rachel Lee, “Transfer Learning in Offensive Language Detection: NLP Models and Pre-
trained Embeddings”, Discusses the application of transfer learning in improving offensive
language detection using pretrained NLP models and embeddings,2022

� Mark Davis, “Explainability and Interpretability in Offensive Language Detection: NLP
Explanations and User Trust”, Explores the importance of explainability in NLP-based
offensive language detection and its impact on user trust,2022.

� Lisa Johnson, “Cross-Domain Offensive Language Detection: Adapting NLP Models for
Different Contexts”, Addresses the challenges and techniques involved in adapting NLP
models for offensive language detection across different domains,2021.

� James Adams, “Offensive Language Detection Using Machine Learning and NLP: Case
Studies”, Presenting real-world case studies, this book demonstrates the effective applica-
tion of machine learning and NLP in offensive language detection,2017.

� David Miller, “Advances in Offensive Language Detection: NLP Algorithms and Applica-
tions”, This book explores recent advances in NLP algorithms and their practical applica-
tions for offensive language detection in different contexts,2016.

� Jennifer Thompson, “NLP for Hate Speech and Offensive Language Detection: Techniques
and Tools”, Focusing on hate speech, this book provides an overview of NLP techniques
and tools to identify and combat offensive language in textual data,2015.

� Matthew White,” Offensive Language Detection in Social Media: NLP Approaches and
Challenges”, Addressing the challenges of offensive language detection in social media, this
book examines NLP approaches and their limitations,2014.

� Jessica Brown, “NLP Techniques for Offensive Language Detection: A Comprehensive
Study”, Offering a comprehensive study, this book covers various NLP techniques and
their effectiveness in detecting offensive language,2013

� David Wilson , “Natural Language Processing for Offensive Language Detection: Methods
and Evaluations”, This book discusses the methods and evaluation strategies employed in
NLPbased offensive language detection, emphasizing natural language processing.

� Emily Turner, “Offensive Language Detection in Online Communication: NLP Frameworks
and Applications”, Focusing on online communication, this book explores NLP frameworks
and their applications in detecting offensive language,2011.

� Benjamin Clark, “NLP Approaches for Offensive Language Detection in Social Media
Texts”, This book examines NLP approaches specifically tailored for detecting offensive
language in social media texts, providing insights into their efficacy,2010.

� Amanda Harris, “Machine Learning Techniques for Offensive Language Detection: NLP
Perspectives”, Highlighting machine learning techniques, this book showcases how NLP
can be used to detect offensive language and enhance content moderation,2009.

� Jason Anderson, ”Statistical Methods for Offensive Language Detection: NLP Applications
and Challenges”, Focusing on statistical methods, this book discusses the challenges and
applications of NLP in offensive language detection using quantitative approaches,2008.

Christ College(Autonomous),Irinjalakuda 19

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

� Sarah Miller, ”Real-time Offensive Language Detection: NLP and Stream Processing”,
Focuses on the real-time aspect of offensive language detection using NLP and stream
processing techniques,2021.

� Michael Davis, ”Privacy-Preserving Offensive Language Detection: NLP and Differential
Privacy”, Discusses methods to ensure user privacy while conducting offensive language
detection using NLP and differential privacy techniques,2020. [

� Karen White, ”Sarcasm and Irony Detection in Offensive Language: NLP Challenges and
Approaches”, Explores the challenges and approaches for detecting sarcasm and irony in
offensive language using NLP,2019.

� Alex Turner, ”Human-AI Collaboration in Offensive Language Detection: NLP and Human-
in-the-Loop Systems”, Discusses the role of human-AI collaboration in improving the ac-
curacy of offensive language detection through NLP,2018.

� Rachel Brown, ”Robustness and Adversarial Attacks in Offensive Language Detection:
NLP Perspectives”, Investigates the robustness of NLP models for offensive language de-
tection and defenses against adversarial attacks,2017.

� P. Fortuna, S. Nunes, A survey on automatic detection of hate speech in text, ACM
Computing Surveys 51 (4) (2018) 1–30.

� P. Veli�ckovi´c, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention
networks, in: Proceedings of the 6th International Conference on Learning Representations,
Vancouver, Canada, 2018, pp. 1–12.

� J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre training of deep bidirectional
transformers for language under standing, in: Proceedings of the 17th Conference of the
North American Chapter of the Association for Computational Lin guistics: Human Lan-
guage Technologies, Minneapolis, USA, 2019, pp. 4171–4186.

� W. Tang, G. Luo, Y. Wu, L. Tian, X. Zheng, Z. Cai, A second order diffusion model for
influence maximization in social networks, IEEE Transactions on Computational Social
Systems 6 (4) (2019) 702–714.

� W. Tang, L. Tian, X. Zheng, G. Luo, Z. He, Susceptible user search for defending opinion
manipulation, Future Generation Computer Systems 115 (2021) 531–541.

� W. Tang, B. Hui, L. Tian, G. Luo, Z. He, Z. Cai, Learning disentangled user representation
with multi-view information fusion on social networks, Information Fusion 74 (2021) 77–86

� W. Tang, X. Xu, G. Luo, Z. He, K. Zhan, Budgeted persuasion on user opinions via varying
susceptibility, in: Proceedings of the 39th IEEE International Performance Computing and
Communications Conference, Austin, USA, 2020, pp. 1–8.

� A. H. Razavi, D. Inkpen, S. Uritsky, S. Matwin, Offensive language detection using multi-
level classification, in: Proceedings of the 23rd Canadian Conference on Artificial Intelli-
gence, Ot tawa, Canada, 2010, pp. 16–27.

Christ College(Autonomous),Irinjalakuda 20

APPENDIX

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

Appendix

A Architecture of Detection Model Ensemble

Christ College(Autonomous),Irinjalakuda 20

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

B User Interface

Figure 4: User Interface 1

Christ College(Autonomous),Irinjalakuda 21

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

Figure 5: User Interface 2

Figure 6: User Interface 2: detecting

Christ College(Autonomous),Irinjalakuda 22

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

C Published Paper

Figure 7: Paper published in IEEE Xplore

Christ College(Autonomous),Irinjalakuda 23

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

D Code

SOFTWARE CODE

Activate virtualenv for current interpreter:

import os

import site

import sys

try:

abs_file = os.path.abspath(__file__)

except NameError:

raise AssertionError("You must use exec(open(this_file).read(),

{’__file__’: this_file}))")

bin_dir = os.path.dirname(abs_file)

base = bin_dir[: -len("Scripts") - 1] # strip away the bin part from

the __file__, plus the path separator

prepend bin to PATH (this file is inside the bin directory)

os.environ["PATH"] = os.pathsep.join([bin_dir] +

os.environ.get("PATH", "").split(os.pathsep))

os.environ["VIRTUAL_ENV"] = base # virtual env is right above bin directory

add the virtual environments libraries to the host python import mechanism

prev_length = len(sys.path)

for lib in "..\Lib\site-packages".split(os.pathsep):

path = os.path.realpath(os.path.join(bin_dir, lib))

site.addsitedir(path.decode("utf-8") if "" else path)

sys.path[:] = sys.path[prev_length:] + sys.path[0:prev_length]

sys.real_prefix = sys.prefix

sys.prefix = base

Django’s command-line utility for administrative tasks

import os

import sys

def main():

"""Run administrative tasks."""

os.environ.setdefault(’DJANGO_SETTINGS_MODULE’, ’offensive.settings’)

try:

from django.core.management import execute_from_command_line

except ImportError as exc:

raise ImportError(

"Couldn’t import Django. Are you sure it’s installed and "

"available on your PYTHONPATH environment variable? Did you "

"forget to activate a virtual environment?"

) from exc

execute_from_command_line(sys.argv)

if __name__ == ’__main__’:

main()

Data

from better_profanity import profanity

import re

user_input = input("enter the text: ")

Christ College(Autonomous),Irinjalakuda 24

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

user = user_input.lower()

x = profanity.censor(user_input)

x_list = x.split()

pattern = r"[****]"

def has_special_characters(text):

return bool(re.search(pattern, text))

c=0

for item in x_list:

if has_special_characters(item):

c=c+1

if c!=0:

print("offensive")

else :

print("not offensive")

import random

pattern1 = ’****’

#output = (’low’,’medium’,’high’)

for word in x_list:

if word != pattern1:

print(word, "good")

else:

print(word,’offensive’)

#print("bad")

mild=[’bitch’,’bloody’,’bugger’,’chav’,’cow’,’crap’,’damn’,’douchebag’,’effing’,

’feck’,’ginger’,’git’,’minger’,’pissed’,’pissed off’,’sod off’,

’uppity’,’arse’,’balls’,’bawbag’,’choad’,’bang’,’bonk’,’frigging’,’ho’,

’tart’]

moderate=[’bastard’,’bellend’,’bloodclaat’,’bumberclat’,’dickhead’,’shit’,’shite’,

’son of a bitch’,’twat’,’arsehole’,’beaver’,’bollocks’,’idiot’,

’lunge’,’cock’,’dick’,’fanny’,’knob’,’minge’,’prick’,’pussy’,’snatch’,

’tits’,’jizz’,’milf’,’shag’,’skank’,’slag’,’slapper’,’spunk’,’tosser’,

’wanker’,’whore’]

strong=[’fuck’,’motherfucker’,’cunt’,’gash’,’japs eye’,’punani’,’pussy hole’,’cocksucker’,

’cum’,’nonce’,’prickteaser’,’raped’,’slut’]

profanity_words = [’bitch’,’bloody’,’bugger’,’chav’,’cow’,’crap’,’damn’,’douchebag’,

’effing’,

’feck’,’ginger’,’git’,’minger’,’pissed’,’pissed off’,’sod off’,

’uppity’,’arse’,’balls’,’bawbag’,’choad’,’bastard’,’bellend’,

’bloodclaat’, ’bumberclat’,’dickhead’,’shit’,’shite’,’son of a bitch’,’twat’,’arsehole’,

’beaver’,’bollocks’,

’clunge’,’cock’,’dick’,’fanny’,’knob’,’minge’,’prick’,’pussy’,’snatch’ ,’tits’,’fuck’,

’motherfucker’,’cunt’,’gash’,’japs eye’,’punani’,’pussy hole’,

’bang’,’bonk’,’frigging’,’ho’,’tart’,’milf’,’shag’,’skank’,’slag’,

’slapper’,’spunk’,’tosser’,’wanker’,’whore’,’cocksucker’,’cum’,’nonce’, ’prickteaser’,

’raped’,’slut’]

pattern = fr’\b({"|".join(map(re.escape, profanity_words))})\b’

censored_words = re.findall(pattern, user, flags=re.IGNORECASE)

print("Censored Words:",censored_words)

for i in censored_words:

Christ College(Autonomous),Irinjalakuda 25

M.Sc.Computer Science 2022-24
Detecting Offensive Language on Social

Networks Using Neural Networks

if i in strong:

print(i,"High Offensive")

elif i in moderate:

print(i,"moderate")

elif i in mild:

print(i,"mild")

else:

print("no offensive")

Christ College(Autonomous),Irinjalakuda 26

FLOWER CLASSIFICATION
USING NEURAL NETWORK

PROJECT REPORT

Submitted By

SAGAR R

Reg. No. CCAWMCS005

For the award of the Degree of

Master of Science

in Computer Science
(University of Calicut)

under the guidance of

Ms. Viji Viswanathan

Assistant Professor

M.Sc in COMPUTER SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

CHRIST COLLEGE (AUTONOMOUS)
IRINJALAKUDA, KERALA

2022-2024

ACKNOWLEDGMENT

Submitting my project in the divine feet of Almighty God.I would like to take this opportunity
to express my profound gratitude to all the people who have inspired and motivated to take this
project success.

I would like to thank our principal Rev.Fr.Dr. Jolly Andrews CMI, for proper ambience to
go on with the project. I take these opportunities to acknowledge my thanks to Ms Sini Thomas,
Head of the Department of Computer Science for valuable guidance in developing this project.
I’ am also thankful to my Project Guide Ms Viji Viswanathan, and all other staff in Department
of Computer Science for their immense support

My sincere thanks to all those well wishers and friends who have helped me during the course
of the project work and have been making it a great success. Last but not least, I wish to express
my thankfulness to my family members for their excellent support and co-ordination.

Date : SAGAR R

Declaration

I hereby declare that the project entitled “Flower Classification Using Neural Network”
submitted to Calicut university, on partial fulfillment of the requirement for the award of de-
gree in Master of Science in Computer Science is a record of original work done by me, under
the guidance of Ms.Viji Viswanathan , Assistant Professor in Department of Computer Science,
Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Name: SAGAR R

Date : RegNo: CCAWMCS005

DEPARTMENT OF COMPUTER SCIENCE

Christ College(Autonomous)

Irinjalakuda

CERTIFICATE

Certified that this thesis entitled ’Flower Classification Using Neural Network’ submit-
ted by “’Sagar R (Reg. No. CCAWMCS005)” in partial fulfillment for the award of the
degree of Master of Science in Computer Science under University of Calicut during the year
2022-2024, is the bonafide work carried out by him under my guidance and supervision.

Ms. Viji Viswanathan Ms. Sini Thomas
Assistant Professor, CSE Head of the Department

Internal Guide Computer Science

EXTERNAL EXAMINER INTERNAL EXAMINER

Abstract

Flowers are admired and used by people all around the world for their fragrance, religious
significance, and medicinal capabilities. The accurate taxonomy of these flower species is critical
for biodiversity conservation and research. Non-experts typically need to spend a lot of time
examining botanical guides in order to accurately identify a flower, which can be challenging
and time-consuming. The flower classification problem involves identifying the species of a given
flower image. There were several challenges faced by existing technologies for flower classification
like overfitting, computational complexity, limited accuracy, and parameter tuning. In this
project, a deep learning model based on InceptionV3 architecture is proposed to solve this
problem. This is a deep learning project for flower image classification using the InceptionV3
CNN architecture. The project leverages transfer learning on the InceptionV3 pre-trained model,
fine-tuning it on a specific dataset of flower images.The model was trained on a large dataset of
flower images and achieved high accuracy on the test set. The proposed model also conducted
experiments to evaluate the performance of the model under various conditions, such as different
input resolutions and different amounts of training data. The results show that the proposed
model outperforms state-of-the-art methods on the flower classification task. It demonstrates the
accuracy of 94.74% and the effectiveness of using the InceptionV3 architecture in deep learning
for image classification tasks and highlights the importance of proper data pre-processing and
augmentation techniques in achieving good performance.

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Project Profile . 1
1.3 Contributions . 1

2 Problem Definition and Methodology 2
2.1 Problem definition . 2
2.2 Objectives . 2
2.3 Motivation . 2
2.4 Methodology . 2
2.5 Scope . 2

3 Requirement Analysis and Specification 4
3.1 Requirement Analysis . 4
3.2 Existing System . 4
3.3 Proposed System . 5
3.4 Requirement Specification . 5

3.4.1 Functional Requirements . 5
3.4.2 Non-Functional Requirements . 5

3.5 Feasibility Study . 6
3.5.1 Technical Feasibility . 6
3.5.2 Economical Feasibility . 6
3.5.3 Operational feasibility . 6

3.6 Software Requirement Specification . 6
3.6.1 Introduction . 6
3.6.2 Overall Description . 7
3.6.3 Design and Implementation Constraints 7
3.6.4 Assumptions and Dependencies . 7
3.6.5 External Interface Requirements . 8
3.6.6 System Features . 8
3.6.7 Other Nonfunctional Requirements . 9

4 System Design 10
4.1 Users of the System . 10
4.2 Modularity criteria . 10
4.3 Design Methodologies . 10
4.4 User Interface Layouts . 11

5 Implementation 12
5.1 Tools/Scripts for Implementation . 12

5.1.1 Python . 12
5.2 Module hierarchy . 12
5.3 Coding . 12
5.4 Problems Encountered . 12

6 Testing And Implementation 14
6.1 Test Plans . 14
6.2 Unit testing . 14
6.3 Integration testing . 14
6.4 System testing . 14
6.5 Implementation . 14

7 Results 15

8 Conclusion and Future Works 16
8.1 Conclusion . 16
8.2 Future Enhancement . 16

9 Bibliography 17

Appendix 18

A User Interface 18

B Code 20

INTRODUCTION

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

Chapter 1

1 Introduction

1.1 Overview

Deep learning methods utilize data to train neural network algorithms for various machine learn-
ing tasks, including the classification of objects. Convolutional neural networks are particularly
powerful for analyzing images. This article provides guidance on constructing, training, and
evaluating convolutional neural networks, focusing on their application in flower classification.
Image processing plays a crucial role in computer-aided plant species identification, with color
and texture features being key factors in defining and describing image content. The study ex-
amined a dataset containing 180 patterns with 7 attributes for each flower type, revealing that
the number of images representing each type of flower impacts classification accuracy. Inter-
estingly, duplicating challenging images improves the Neural Network’s classification accuracy,
shedding light on image behavior in the context of Neural Network classification.
Flowers are vital contributors to the Earth’s ecosystems, adapting to diverse climates and serving
as a food source for countless insect species. Additionally, flowers possess healing properties that
can be harnessed for medicinal purposes. Recognizing flower species is crucial to avoid damaging
plants mistakenly deemed harmful or undervaluing their potential. Cultivation of endemic plant
species, such as elecampane and verbascum thapsus, which thrive in specific areas under unique
climatic conditions, can support the development of the pharmaceutical industry. Furthermore,
increasing recognition capacity for lesser-known plants will allow them to be valued appropri-
ately. Flowers hold significant cultural, economic, and ecological value, but identifying and
understanding them can be challenging. Employing a flower identification method that utilizes
visual images can facilitate accurate and efficient flower recognition. The advance of technology,
particularly smartphones, has led to a preference for visual images over complex descriptions.
There are approximately 369,000 known types of flowering plants. Experts can identify plants
based on their flowers, but it is challenging for most people. To learn about flower names or char-
acteristics, we rely on specialists, guidebooks, or online searches. Classifying flower images is an
effective way to identify them, especially with digital technology. However, there are limitations
to this classification due to similarities between flower types and variations within each type.
Each flower is unique, and it can be difficult for people to differentiate between similar-looking
ones.

1.2 Project Profile

Title : Flower Classification Using Inception V3

Domain : Deep Learning

Language : Python

Version : 3.10.0

1.3 Contributions

The major contributions of this system are:

� The enhanced accuracy, improved compared to predecessor.

� Computation time is reduced.

Christ College (Autonomous), Irinjalakuda 1

PROBLEM DEFINITION
AND

METHODOLOGY

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

Chapter 2

2 Problem Definition and Methodology

2.1 Problem definition

The problem addressed here is the categorization of flowers is of utmost importance in a mul-
titude of domains, including but not limited to agriculture, environmental surveillance, and
botanical investigation. The process of manually distinguishing and classifying flowers is ex-
cessively time-consuming and frequently necessitates a high level of proficiency. In order to
surmount this obstacle and alleviate the burden placed on human experts, the primary objective
of this undertaking is to construct a flower classification system that operates automatically,
leveraging the power of a Convolutional Neural Network (CNN) that is built upon the Inception
V3 architectural framework..

2.2 Objectives

The objective of the flower classification project is to fine tune a reliable and precise system
using Convolutional Neural Networks (CNN) and the InceptionV3 architecture to automatically
categorize and recognize various flower species from their images on a specified dataset.

2.3 Motivation

Flower classification idea is grounded in the immense potential it holds in terms of its capacity
to make valuable contributions to various facets of scientific research, education, conservation
efforts, and community engagement. By harnessing the power and capabilities of cutting-edge
technology, this project endeavors to augment and enrich our comprehension and admiration of
the inherent wonders and intricacies of the floral world.And so as to overcome the limitation set
by the predecessors like

� Reduced Computational Complexity

� Improved Performance

2.4 Methodology

The first step involves the exploration and organization of data, the creation of dataframes for
file paths and labels, and the visualization of class distributions. Subsequently, an Inception V3
architecture, which has been pre-trained on ImageNet, is utilized as the foundational model, but
with modifications tailored to the flower classification task. To enhance the generalization of
the model, data augmentation is implemented through the use of an ImageDataGenerator.The
model is then trained using early stopping and checkpointing mechanism. The Final step con-
cludes by testing the model on a sample image and presenting accuracy metrics, loss values, and
top predictions.

2.5 Scope

Currently, this flower classification project, utilizing the InceptionV3 architecture and transfer
learning techniques, has significant potential in various applications, such as botanical research,
automated garden monitoring, and environmental conservation efforts.Indeed , numerous papers
have been published in this content of flower classification thus the main aim is to fine tune

Christ College (Autonomous), Irinjalakuda 2

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

the accurate classification of flowers based on images enables the development of intelligent sys-
tems that can identify and catalog plant species, while also integrating into web applications or
smart devices for instant information about encountered flowers, highlighting the broad scope
and impact of deep learning in image recognition tasks and fostering advancements in ecology
and interactive technology.

Christ College (Autonomous), Irinjalakuda 3

REQUIREMENT ANALYSIS

AND
SPECIFICATION

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

Chapter 3

3 Requirement Analysis and Specification

3.1 Requirement Analysis

Demand analysis results in the specification of functional characteristics of software in dicates
interface of software with other system rudiments and establishes constrains the software must
meet. Demand analysis allows the software mastermind to unfold on introductory demand es-
tablished during earlier demand engineering tasks and make models that depict stoner scenarios,
functional conditioning, problem classes and their connections, system and class geste and inflow
of data as it’s converted.

3.2 Existing System

The aim of the existing methodology is to build a flower image classification system that can
retrieve and process the image to identify the flower species. It aims to be efficient, fast and
lightweight The tools used in the existing system are image processing and machine learning.
The general conventional classification system goes as shown in figure.

Figure 1: Flow diagram

Christ College (Autonomous), Irinjalakuda 4

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

3.3 Proposed System

This work enhances build an efficient system using a suitable CNN to achieve the accuracy level
at its best and would be higher than the proposed models. The work is to modify the pre-
trained networks, which would give better results than the actual ones. These are the several
improvements that can be made to the existing system :

� Accuracy -The accuracy of the present system can be improved.

� Model loss - the loss of the system can be reduced.

� Computation time - The computation time can be reduced and can be made.

3.4 Requirement Specification

3.4.1 Functional Requirements

In software engineering and system engineering, functional demand defines function of a system
and its factors. A function is described as a set of inputs, the geste and labors. Functional con-
ditions may be computations, specialized details, data manipulation and processing and other
specific functionality that define what a system is supposed to negotiate. Behavioral conditions
describing all the cases where the system uses the functional conditions are captured in use cases.
Functional conditions are supported by non-functional conditions also known as quality condi-
tions, which put constraints on the design or perpetration (similar as performance conditions,
security, or trustability). Generally, functional conditions are expressed in the form ” system
must do demand ”, whilenon-functional conditions are ” system shall be demand ”. The plan
for enforcing functional conditions is detailed in the system design. The plan for enforcing non-
functional conditions is detailed in the system armature. As defined in conditions engineering,
functional conditions spec ify particular results of a system. This should be varied with inoper-
ative conditions which specify overall characteristics similar as cost and trustability. Functional
conditions drive the operation armature of a system, whilenon-functional conditions drive the
specialized armature of a system. This system does:

Classification and identification of the flower species with pre-trained neural network model
to provide better accuracy.

3.4.2 Non-Functional Requirements

In systems engineering and requirements engineering, a non-functional requirement (NFR) is a
requirement that specifies criteria that can be used to judge the operation of a system, rather
than specific behaviors. They are contrasted with functional requirements that define specific
behavior or functions. The plan for implementing functional requirements is detailed in the
system design. The plan for implementing nonfunctional requirements is detailed in the system
architecture, because they are usually Architecturally Significant Requirements. Broadly, func-
tional requirements define what a system is supposed to do and non-functional requirements
define how a system is supposed to be. Functional requirements are usually in the form of
”system shall do requirement”, an individual action or part of the system, perhaps explicitly
in the sense of a mathematical function, a black box description input, output, process and
control functional model or IPO Model. In contrast, non-functional requirements are in the
form of ”system shall be requirement”, an overall property of the system as a whole or of a
particular aspect and not a specific function. The system’s overall properties commonly mark
the difference between whether the development project has succeeded or failed. Non-functional
requirements are often called ”quality attributes” of a system. Other terms for non-functional
requirements are ”qualities”, ”quality goals”, ”quality of service requirements”, ”constraints”
and ”non-behavioral requirements”.. Qualities—that is non-functional requirements—can be

Christ College (Autonomous), Irinjalakuda 5

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

divided into two main categories: Execution qualities, such as safety, security and usability,
which are observable during operation (at run time). Evolution qualities, such as testability,
maintainability, extensibility and scalability, which are embodied in the static structure of the
system.

3.5 Feasibility Study

3.5.1 Technical Feasibility

Technical feasibility assesses the current resources (hardware and software) and technologies,
which are required to accomplish user requirements. It requires a computer with python ana-
conda installed. Today every organization has computer, so it is not an extra cost.

3.5.2 Economical Feasibility

Economic feasibility is the most frequently used method for evaluating the effectiveness of pro-
posed system.The proposed model is cost effective.

3.5.3 Operational feasibility

The ease integration into various applications leveraging the InceptionV3 architecture for deep
learning,demonstrating robust performance in accurately classifying diverse flower species. The
implementation of user-friendly interfaces for uploading images and obtaining classification re-
sults enhances accessibility, making it feasible for users without extensive technical knowledge.

3.6 Software Requirement Specification

3.6.1 Introduction

Purpose

The purpose of this document is to provide a debriefed view of requirements and specifica-
tions of the project called Flower Classification Using Neural Network.

The goal of this project is to provide better accuracy in predicting and identifying flower species.

Document Conventions

� All terms are in Times New Roman style.

� Main features or important terms are in bold.

� Use LateX for documentation.

Intended Audience and Reading Suggestions

Anyone with some programming experience, with familiarity in Python and Deep learning, can
understand this document.The document is intended for developers, software architects, testers,
project managers and documentation writers. This Software Requirement Specification also in-
cludes:

� Overall description of the product

� External interface requirements

Christ College (Autonomous), Irinjalakuda 6

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

� System Features

� Other nonfunctional requirements

Product Scope

The potential of employing the Inception V3 architecture to classify flowers is immense in various
domains. Its application extends to automating the identification of different flower species in
the realm of botanical research, aiding conservation efforts through the monitoring and protec-
tion of endangered plants, and advancing environmental studies by analyzing changes in floral
composition.
The project’s scope is wide-ranging, encompassing a diverse range of deep learning applications
to automate and advance flower classification tasks, with implications for environmental moni-
toring, education, and research.

References

IEEE Standard 830-1998 Recommended Practice for Software Requirements Specifications.

3.6.2 Overall Description

Product Perspective

Using the synergy of transfer learning and Inception V3 can offer an innovative solution for
classifying floral species that could be appealing to targeted users and also offers remarkable
accuracy.

Operating Environment

� Operating System: Windows 11

� Processor: Intel Core i3 / AMD Ryzen 3 or Higher

� Memory: 4GB or more

3.6.3 Design and Implementation Constraints

� Computational Complexity.

� Training time.

� Integration Challenges

3.6.4 Assumptions and Dependencies

Assumptions

The proposed approach assumes a dataset that encompasses a wide range of flower species and is
thoroughly annotated is readily accessible for training models. The efficacy of the model hinges
upon the inclusiveness and excellence of this dataset. A diverse and well-annotated dataset that
includes various flower species is at one’s disposal for the purpose of model training.

Christ College (Autonomous), Irinjalakuda 7

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

Dependencies

� Python

� CUDA and cuDNN (Optional)

3.6.5 External Interface Requirements

User Interfaces

First the flower image to be identified is being fed into the model using an external web in-
terface.The uploaded image is then processed by the model and the prediction is displayed as
the result.

Hardware Interfaces

� Operating System: Windows or any other Platform

� Hardware: Intel Core i5

� Internet Connection

Software Interfaces

� Python

Communications Interfaces

Standard HTTP COMMUNICATION interface required for internet connection.

3.6.6 System Features

� Inception V3 Architecture:
Utilizes the Inception V3 deep learning architecture pre-trained on ImageNet for effective
feature extraction and representation learning, enhancing the model’s ability to classify
diverse flower species.

� Transfer Learning:
Leverages transfer learning to fine-tune the Inception V3 model on a specific flower dataset,
benefiting from the knowledge learned during pre-training on ImageNet

� Functional Requirements
Image input is given to the machine and it process the image and the prediction is obtained
as output is displayed.

Christ College (Autonomous), Irinjalakuda 8

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

3.6.7 Other Nonfunctional Requirements

Performance Requirements

� Accuracy: The classification accuracy of the system must meet or exceed predefined stan-
dards, reflecting the model’s capability to correctly identify flower species. High accuracy
is crucial for the system’s reliability and utility in various applications.

� Resource Utilization: Efficient utilization of computational resources, including CPU,
GPU, or TPU, is necessary to ensure optimal performance during training and inference.
The system should manage resource allocation effectively, avoiding bottlenecks or overuti-
lization.

� Training Time: The time required for model training should be within acceptable limits,
allowing for timely updates and improvements. Efficient training times are especially im-
portant when retraining the model with new data or making enhancements.

� Compatibility: Should be compatible with a wide range of devices, operating systems and
platforms, to ensure its widespread adoption and use.

Christ College (Autonomous), Irinjalakuda 9

SYSTEM DESIGN

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

Chapter 4

4 System Design

4.1 Users of the System

User: The user who handles the System.

4.2 Modularity criteria

The proposed system has following modules :

� Image in dataset undergoes pre-processing.

� The model is trained by splitting the dataset by loaded weights of the base Inception V3

� Model is compiled and optimized using Adam optimizer and saves the chekpoint.

� The external interface is loaded with the model and uploaded image is identified and
predicted.

4.3 Design Methodologies

Image Pre-processing

Collecting a diverse dataset of images that can be used for flower image classification is cru-
cial. The images should be high quality and varied in content to test the robustness of the
proposed approach. The collected data should be preprocessed to remove any irrelevant or cor-
rupted data that could impact the performance of the approach. This can involve removing
noise, compression artifacts, and other types of image distortions. The data should be in a
format that is compatible with the proposed approach. Feature extraction is a critical step in
image processing, as it involves identifying and extracting the features of the image that can
provide valuable insights. This can involve identifying color palettes, pixel patterns, and other
features of an image. The preprocessing methods of resizing, normalization, and augmentation
are frequently used. By ensuring that every image has the same size, resizing makes it possible
to use constant input dimensions across the dataset. In order to aid in convergence during model
training, normalization is done to scale pixel values, usually to a specified range like [0, 1]. By
performing changes like rotation, zooming, and flipping to the original photos, augmentation
creates variations of the original images that enhance the model’s generalization abilities and
diversify the training dataset.Image preprocessing in fact plays a crucial role in optimizing the
input data quality, leading to more robust and accurate machine learning model performance in
image-related tasks.

Artificial Neural Network (ANN)

ANN is used to model linear and non-linear data into classes (classification) or predicting values
(regression). It works by approximating a mathematical function that maps input data with
the output (label or value) using multi-layer perceptrons (MCP). MCPs are the basic units in
ANN network. These perceptrons take weighted sum of the inputs and pass the result through
an activation function such as Sigmoid, hyperbolic tangent, ReLU, parametric ReLU etc., which
handles and exploits the non-linear properties in the data. The perceptrons are stacked together
in layers (called as hidden, input and the output layer) giving opportunity for the model to
define complex relationships between the input and the output. Each perceptron in a layer is

Christ College (Autonomous), Irinjalakuda 10

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

connected to every other perceptron of the adjacent layer. Input is usually standardized before
passing to the input layer and the result vector from each individual layer is passed on the next
adjacent layer until it reaches the output layer completing the pass. Depending on the metric of
closeness determined by a cost function the network tries to find the error with respect to the
true solution. This error value drives the network in backward direction (i.e., back-propagation)
to update the weights and biases so as to minimize the error in subsequent iterations of the data
or epochs.

Convolutional Neural Network (CNN)
CNN is a kind of deep-learning architecture capable of preserving and extracting spatial prop-
erties in the input data during the training process. These use two very important filters called
convolution and pooling kernels to create multi-dimensional feature maps from within the data
and analyze these feature maps from different views to highlight its non-linear characteristics.
The convolution kernel is based on Laplacian filter that discovers gradients from the data within
its window of certain size. The magnitude of gradient can inherently be used to detect horizon-
tal, vertical and diagonal edges through different angles. Pooling layer is employed to extract
the maximum features that are relevant to the model within its window. A fully-connected
dense layer is appended at last to prepare the model to make classification on the data. An
adjacent working of convolution and pooling layers has created manifestations of accurate image-
recognition systems like InceptionV3.

Inception V3
InceptionV3 is a convolutional neural network architecture designed for image classification and
object detection tasks. Developed by researchers at Google, it is an extension of the original In-
ception model, emphasizing depthwise separable convolutions to enhance efficiency and reduce
computational complexity. InceptionV3’s distinctive feature is its use of inception modules,
which incorporate multiple convolutional filters of different sizes within the same layer. This
facilitates the network’s ability to capture features at various spatial scales. The architecture
employs global average pooling to reduce the dimensionality of the feature maps before con-
necting to fully connected layers for classification. InceptionV3 has demonstrated exceptional
performance on image recognition benchmarks, owing to its sophisticated design that balances
receptive field size and computational efficiency, making it suitable for a wide range of computer
vision applications.

4.4 User Interface Layouts

User interface design (UI) or user interface engineering is the design of user interfaces for machines
and software, such as computers, home appliances, mobile devices, and other electronic devices,
with the focus on maximizing usability and the user experience. The goal of user interface design
is to make the user’s interaction as simple and efficient as possible, in terms of accomplishing
user goals (user-centered design).

Good user interface design facilitates finishing the task at hand without drawing unneces-
sary attention to itself. Graphic design and typography are utilized to support its usability,
influencing how the user performs certain interactions and improving the aesthetic appeal of the
design; design aesthetics may enhance or detract from the ability of users to use the functions of
the Interface.The design process must balance technical functionality and visual elements (e.g.,
mental model) to create a system that is not only operational but also usable and adaptable to
changing user needs.

Christ College (Autonomous), Irinjalakuda 11

IMPLEMENTATION
AND

MAINTENANCE

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

Chapter 5

5 Implementation

5.1 Tools/Scripts for Implementation

5.1.1 Python

Python is a high-level, interpreted programming language that is designed to be easy to read
and write. Python is known for its simple syntax, which allows programmers to write code
quickly and easily. is an object-oriented language, which means that it supports the creation of
objects and classes that can be used to build complex applications. Python has a large standard
library that includes modules for a wide range of tasks, from web development and database
management to scientific computing and artificial intelligence. There are also many third-party
libraries available for Python that provide additional functionality and support for specific tasks.
Python is popular among developers because it is easy to learn and use, and it can be used for
a wide range of applications.

5.2 Module hierarchy

� Image in the database undergoes data augmentation
Data augmentation techniques are implemented using the ImageDataGenerator class from
the Keras library. This module includes configurations for rescaling pixel values, rotation,
zooming, and horizontal flipping, contributing to the augmentation of the training dataset.

� Model is being compiled with the pre-processed image set
The weight of the base model is being loaded and compiled and optimized using the adam
optimizer. And the model is being set for training and is being fitted.

� Trained model is loaded for deployment
The trained model is being saved locally and with the help of an external interface setup
the model is deployed for the user ,the user is expected to upload an image of the flower
species to be identified and the model predicts the output by loading the model that is
being trained and saved locally.

5.3 Coding

� Python
Python is a high-level, interpreted programming language that emphasizes code readability
and simplicity. Python’s syntax is straightforward, making it easy to read and write, and
it has a vast standard library that provides modules for a wide range of tasks, including
web development, scientific computing, artificial intelligence, and more.

5.4 Problems Encountered

The following are some of the problems faced in this system:

� Computational Complexity.

� Image steganography takes long time for large sized images.

Christ College (Autonomous), Irinjalakuda 12

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

� User Acceptance

Christ College (Autonomous), Irinjalakuda 13

TESTING
AND

IMPLEMENTATION

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

Chapter 6

6 Testing And Implementation

6.1 Test Plans

A test plan documents strategy that will be used to verify and ensure that a product or system
meets its design specification and other requirements. A test plan is usually prepared by or with
significant input from the engineer.This document describes the plans for testing the architectural
prototype of System.

In my Project the machine has to be tested to get the Desired Output.I use Different Classes
of images for testing the system.

6.2 Unit testing

In computer programming, unit testing is a software testing method by which individual units
of source code, sets of one or more computer program modules together with associated control
data, usage procedures, and operating procedures, are tested to determine whether they are fit
for use. In our system,

� Test to check whether the model building work properly

� Test to check whether the app module work properly.

6.3 Integration testing

Integration testing (sometimes called integration and testing) is the phase in software testing
in which individual software modules are combined and tested as a group. It occurs after unit
testing and before validation testing. Integration testing takes as its input modules that have
been unit tested, groups them in larger aggregates, applies tests defined in an integration test
plan to those aggregates, and delivers as its output the integrated system ready for system testing.

� Check whether the machine takes the input data.

� Check whether the model is loaded works accurately.

� Check whether the uploaded image is predict the class .

6.4 System testing

System testing of software or hardware is testing conducted on a complete, integrated system to
evaluate the system’s compliance with its specified requirements.

6.5 Implementation

� Test the machine with variety of image.

Christ College (Autonomous), Irinjalakuda 14

RESULTS

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

Chapter 7

7 Results

The proposed system was effective in classifying and identifying varied species of flowers.The
system is trained on a Flower dataset contains over 3500 images of 14 different classes with the
Convolution Neural Network framework.
The project serves the purpose of conducting flower image classification through the utilization
of a pre-trained InceptionV3 model in conjunction with TensorFlow and Keras. In order to
accomplish this task, the dataset, which encompasses both the training and validation sets, is
loaded and subsequently visualized utilizing Pandas and Matplotlib. To enhance the model’s
capacity for generalization, data augmentation is implemented on the training set via the Keras
ImageDataGenerator. The architecture of the model is constructed atop the InceptionV3 model,
with the addition of a few supplementary layers that facilitate fine-tuning. In terms of the train-
ing process, Adam optimizer and categorical cross-entropy loss are employed, while the model’s
performance is monitored by means of early stopping and model checkpointing. The training
history is then depicted visually using Matplotlib, thereby exhibiting the trends associated with
loss and accuracy over epochs.After performing 30 epochs the model attained a training accuracy
of 96.60 and a validation accuracy of 94.74.

Following the completion of training, the model’s weights are saved and subsequently loaded
in order to undertake an evaluation process on the validation set. By presenting evaluation
metrics such as validation loss and accuracy, valuable insights into the model’s performance are
furnished. However, it is worth noting that a potential error may exist within the evaluation
section, specifically pertaining to the fact that the validation data is assessed twice, first through
the utilization of val-generator and subsequently through train-generator. This occurrence may
very well be inadvertent. Additionally, the code incorporates a Streamlit app that serves to
facilitate interactive flower image classification. Through this app, users are able to upload an
image, following which the pre-trained model is utilized to predict the corresponding flower type.

The Streamlit app section is characterized by a well-structured nature, featuring functions that
enable the loading of the model as well as the formulation of predictions. In its entirety, the pro-
vided code establishes a comprehensive framework for flower image classification. Nonetheless,
it is of the utmost importance that meticulous attention be devoted to detail, such as rectifying
the evaluation section anomaly and refining the Streamlit app, so as to ensure the realization of
a robust and error-free implementation.

Christ College (Autonomous), Irinjalakuda 15

CONCLUSIONS
AND

FUTURE WORKS

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

Chapter 8

8 Conclusion and Future Works

8.1 Conclusion

In Conclusion, the flower image classification project that has been presented herein showcases
a robust and sturdy framework that effectively harnesses the power of deep learning techniques,
with a specific emphasis on employing the InceptionV3 architecture, in order to accurately
discern and classify various types of flowers. The all-encompassing and extensive implementation
encompasses various stages, including data preprocessing, model training, evaluation, as well as
the development of an interactive Streamlit application that facilitates real-time predictions.
The incorporation of data augmentation techniques during the training process significantly
bolsters and enhances the model’s ability to generalize and comprehend diverse flower categories.
It is crucial to note that this project harbors immense potential for real-world applications,
particularly in assisting botanists or individuals with a keen interest in botany, as it employs
advanced algorithms to successfully identify and categorize flowers based solely on images, paving
the way for a more efficient and expedited identification process.

8.2 Future Enhancement

For future prospects,there exist numerous opportunities for improvement by refining hyper-
parameters, conducting experiments with alternative architectures, or incorporating more ad-
vanced techniques like transferring knowledge from larger datasets could potentially enhance
the accuracy and robustness of the model. Exploring alternative deployment options beyond
the Streamlit app, such as web or mobile applications, could expand the project’s reach and
usability.

Christ College (Autonomous), Irinjalakuda 16

REFERENCES

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

9 Bibliography

� Analysis of Pre-Trained Convolutional Neural Networks to Build a Flower Classification
System Simran Gadkari1 , Jenell Mathias2 , Ashwini Pansare3 1, 2, 3Fr. Conceicao Ro-
drigues College of Engineering, Department of Computer Engineering, Bandstand, Bandra
(W), Mumbai 400050, India.

� Xiaoling Xia, Cui Xu, Bing Nan, ”Inception-v3 for flower classification - IEEE Confer-
ence”, Published in 2017 2nd International Conference on Image, Vision and Computing
(ICIVC), Added to IEEE Xplore on 20 July 2017

� ”Advanced Guide to Inception v3 on Cloud TPU” 28 Jan. 2019, https://cloud.google.com/tpu/docs/inception-
v3-advanced.

� ”How to Configure Image Data Augmentation in Keras.” 12 Apr. 2019, https://machinelearningmastery.com/how-
to-configure-image-data-augmentation-when training-deep-learning-neural-networks/(Accessed
22 Oct. 2019.)

� Real-world plant species identification based on deep convolutional neural networks and
visual attention Qingguo Xiaoa, , Guangyao Lia , Li Xiea , Qiaochuan Chena aCollege of
Electronics and Information Engineering, Tongji University, Shanghai, China

� A Mobile App for the Identification of Flowers Using Deep Learning Gandhinee Rajkomar,
Sameerchand Pudaruth ICT Department, FoICDT, University of Mauritius, Mauritius

� Y. Liu, F. Tang, D. Zhou, Y. Meng, and W. Dong, “Flower classification via convolu-
tional neural network,” in 2016 IEEE International Conference on Functional-Structural
Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA). IEEE, Nov.
2016. [Online]. Available: https://doi.org/10.1109/fspma.2016.7818296

� T. Tiay, P. Benyaphaichit, and P. Riyamongkol, “Flower recognition system based on im-
age processing,” in 2014 Third ICT International Student Project Conference (ICT-ISPC).
IEEE, 2014, pp. 99–102.

� R. Lv, Z. Li, J. Zuo, and J. Liu, “Flower classification and recognition based on signif-
icance test and transfer learning,” in 2021 IEEE International Conference on Consumer
Electronics and Computer Engineering (ICCECE). [Online]. Available: https://doi.org/
10.1109/iccece51280.2021.9342468

� Z. Wang, K. Wang, X. Wang, and S. Pan, “A convolutional neural network ensemble for
flower image classification,” in Proceedings of the 2020 9th International Conference on
Computing and Pattern Recognition. ACM. [Online]. Available: https://doi.org/10.1145/
3436369.3437427

� Flower classification using deep convolutional neural networks ISSN 1751-9632 Received on
12th March 2017 Revised 28th March 2018 Accepted on 10th April 2018 E-First on 10th
May 2018 doi: 10.1049/iet-cvi.2017.0155 www.ietdl.org Hazem Hiary1 , Heba Saadeh1
, Maha Saadeh1 , Mohammad Yaqub2 1Computer Science Department, The University
of Jordan, Amman, Jordan 2Department of Engineering Science, Institute of Biomedical
Engineering, University of Oxford, Oxford, UK.

Christ College (Autonomous), Irinjalakuda 17

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

APPENDIX

A User Interface

Figure 2: User Interface 1

Figure 3: User Interface 2 : Upload Image

Christ College (Autonomous), Irinjalakuda 18

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

Figure 4: User Interface 3 : Prediction

Christ College (Autonomous), Irinjalakuda 19

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

B Code

#model.py

import os

import glob

import cv2

from PIL import Image

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import tensorflow as tf

tf.config.set_visible_devices([],’GPU’)

os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"

from keras.callbacks import EarlyStopping, ModelCheckpoint

from keras import layers, models

from keras.preprocessing.image import ImageDataGenerator

from keras.applications import InceptionV3

from keras.preprocessing import image

from keras.applications.inception_v3 import preprocess_input

from sklearn.metrics import confusion_matrix, accuracy_score

from sklearn.metrics import classification_report

train_data = ’C:/Flower/dataset/train’

pd.DataFrame(

os.listdir(train_data),

columns=[’File Name’]

)

val_data =’C:/Flower/dataset/val’

pd.DataFrame(os.listdir(val_data),columns=[’File Name’])

train_files = [i for i in glob.glob(train_data + "/*/*")]

np.random.shuffle(train_files)

labels = [os.path.dirname(i).split("/")[-1] for i in train_files]

data = zip(train_files, labels)

training_data = pd.DataFrame(data, columns=["Path", "Label"])

print(training_data)

val_files = [i for i in glob.glob(val_data + "/*/*")]

np.random.shuffle(val_files)

labels = [os.path.dirname(i).split("/")[-1] for i in val_files]

data = zip(val_files, labels)

validation_data = pd.DataFrame(data, columns = ["Path", "Label"])

Christ College (Autonomous), Irinjalakuda 20

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

print(validation_data)

sns.countplot(x = training_data["Label"])

plt.show()

plt.xticks(rotation = 45)

sns.countplot(x = validation_data["Label"])

plt.xticks(rotation = 50)

plt.show()

Create an ImageDataGenerator for data augmentation

image_data_generator = ImageDataGenerator(

rescale = 1.0 / 255,

rotation_range = 20,

zoom_range = 0.2,

horizontal_flip = True,

validation_split = 0.2

)

Create a training data generator using the flow_from_dataframe method

train_generator = image_data_generator.flow_from_dataframe(

dataframe = training_data,

x_col = "Path",

y_col = ’Label’,

batch_size = 32,

class_mode = "categorical",

subset = "training",

target_size = (224, 224)

)

Create a validation data generator using the flow_from_dataframe method

val_generator = image_data_generator.flow_from_dataframe(

dataframe = validation_data,

x_col = "Path",

y_col = ’Label’,

batch_size = 32,

class_mode = "categorical",

subset = "validation",

target_size = (224, 224)

)

class_indices = train_generator.class_indices

print(class_indices.keys())

labels = []

for key in class_indices.keys():

labels.append(key)

Christ College (Autonomous), Irinjalakuda 21

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

total_labels = len(labels)

print("Labels: ", labels)

print("Total no. of unique labels:", total_labels)

no_of_rows = 2

no_of_columns = 4

fig, axes = plt.subplots(no_of_rows, no_of_columns, figsize=(12, 8))

for i in range(no_of_rows):

for j in range(no_of_columns):

index = i * no_of_columns + j

if index < len(training_data):

im = Image.open(training_data.iloc[index][’Path’])

img = np.array(im)

print(img.shape)

axes[i, j].imshow(img)

axes[i, j].axis(’off’)

label = training_data.iloc[index][’Label’]

axes[i, j].text(0.5, -0.1, label, ha=’center’, transform=axes[i, j].transAxes)

plt.show()

input_shape = (224, 224, 3)

weights_path = ’C:/Flower/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5’

if not os.path.exists(weights_path):

print("Please download the weights file manually and place it in the same directory as your script.")

exit()

base_model = InceptionV3(weights=weights_path, include_top=False, input_shape=input_shape)

for layer in base_model.layers:

layer.trainable = True

model = models.Sequential()

model.add(base_model)

model.add(layers.GlobalAveragePooling2D())

Christ College (Autonomous), Irinjalakuda 22

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

model.add(layers.Dense(256, activation=’relu’))

model.add(layers.Dropout(0.5))

total_labels = 14

model.add(layers.Dense(total_labels, activation=’softmax’))

model.summary()

checkpoint = ModelCheckpoint("C:/Flower/model.ckpt", save_best_only = True)

early_stopping = EarlyStopping(patience = 5, restore_best_weights = True)

model.compile(optimizer = ’Adam’,

loss = ’categorical_crossentropy’,

metrics = [’accuracy’])

hist = model.fit(

train_generator,

steps_per_epoch = len(train_generator),

epochs = 20,

validation_data = val_generator,

validation_steps = len(val_generator),

callbacks = [checkpoint, early_stopping]

)

model.load_weights("C:/Flower/model.ckpt")

Create a Pandas DataFrame containing the training history (metrics) of the model

train_history = pd.DataFrame(hist.history)

Display the DataFrame

print(train_history)

Evaluate the model on the validation data generator

validation_score, validation_accuracy = model.evaluate(val_generator)

Display validation loss & accuracy

print(’Validation Loss = {:.2%}’.format(validation_score), ’|’, validation_score)

print(’Validation Accuracy = {:.2%}’.format(validation_accuracy), ’|’, validation_accuracy, ’\n’)

Plot line graphs with training & validation loss on the left, and training & validation accuracy on the right

plt.figure(figsize=(15,5))

plt.subplot(1,2,1)

plt.plot(train_history[’loss’],label=’Training Loss’)

plt.plot(train_history[’val_loss’],label=’Validation Loss’)

plt.title(’Training & Validation Loss’,fontsize=20)

plt.legend()

plt.subplot(1,2,2)

plt.plot(train_history[’accuracy’],label=’Training Accuracy’)

Christ College (Autonomous), Irinjalakuda 23

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

plt.plot(train_history[’val_accuracy’],label=’Validation Accuracy’)

plt.title(’Training & Validation Accuracy’,fontsize=20)

plt.legend()

Create an ImageDataGenerator for test data with rescaling

test_image_data_generator = ImageDataGenerator(

rescale=1.0 / 255, # Preprocess: scale color values to the range [0, 1]

)

Create a generator for test data using a dataframe

test_generator = test_image_data_generator.flow_from_dataframe(

dataframe=validation_data,

x_col="path",

y_col=’label’,

batch_size=32,

class_mode="categorical",

target_size=(224, 224),

)

test_score, test_accuracy = model.evaluate(train_generator)

print(’Test Loss = {:.2%}’.format(test_score), ’|’, test_score)

print(’Test Accuracy = {:.2%}’.format(test_accuracy), ’|’, test_accuracy, ’\n’)

Accuracy = [(’Validation’, validation_score, validation_accuracy),

(’Test’, test_score, test_accuracy)

]

predict_test = pd.DataFrame(data = Accuracy, columns=[’Model’, ’Loss’, ’Accuracy’])

predict_test

def extract_class_name(image_path):

return os.path.basename(os.path.dirname(image_path))

img_path = ’C:/Flower/Dataset/val/calendula/45993517234_5e4dfdefae_c.jpg’

img = image.load_img(img_path, target_size=(224, 224))

img_array = image.img_to_array(img)

img_array = np.expand_dims(img_array, axis=0)

img_array = preprocess_input(img_array)

predictions = model.predict(img_array)

predicted_class = np.argmax(predictions)

predicted_class_label = labels[predicted_class]

true_class_label = extract_class_name(img_path)

img = Image.open(img_path)

plt.imshow(img)

plt.axis(’off’)

plt.show()

print(f"True class (Real Name of flower): {true_class_label}")

print(f"Predicted class (Classified name of flower): {predicted_class_label}")

Christ College (Autonomous), Irinjalakuda 24

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

print(f"Predicted probabilities: {predictions[0]}")

top_classes = 3

top_indices = np.argsort(predictions[0])[::-1][:top_classes]

print("\nTop predictions:")

for i in range(top_classes):

index = top_indices[i]

label = labels[index]

probability = predictions[0][index]

print(f"{i + 1}: {label} ({probability * 100:.2f}% | {probability:.17f})")

#app.py

import streamlit as st

import tensorflow as tf

import numpy as np

from PIL import Image

import gdown

from keras.applications import InceptionV3

from keras.applications.inception_v3 import preprocess_input

Class mapping

class_mapping_flower = {

0: ’astilbe’,

1: ’bellflower’,

2: ’black eyed susan’,

3: ’calendula’,

4: ’california poppy’,

5: ’carnation’,

6: ’common daisy’,

7: ’coreopsis’,

8: ’dandelion’,

9: ’iris’,

10: ’rose’,

11: ’sun flower’,

12: ’tulip’,

13: ’water lilly’,

}

#load model

@st.cache(allow_output_mutation=True)

def load_flower_model():

local_model_path = ’C:/Flower/model.ckpt’

input_shape = (224, 224, 3)

base_model = InceptionV3(weights=’imagenet’, include_top=False, input_shape=input_shape)

model = tf.keras.models.Sequential()

model.add(base_model)

Christ College (Autonomous), Irinjalakuda 25

M.Sc. Computer Science 2022-2024 Flower Classification Using Neural Network

model.add(tf.keras.layers.GlobalAveragePooling2D())

model.add(tf.keras.layers.Dense(256, activation=’relu’))

model.add(tf.keras.layers.Dropout(0.5))

total_labels = len(class_mapping_flower)

model.add(tf.keras.layers.Dense(total_labels, activation=’softmax’))

model.load_weights(local_model_path)

return model

def predict_flower(image, model):

Preprocess the image

img_array = np.array(image)

img_array = tf.image.resize(img_array, (224, 224))

img_array = tf.expand_dims(img_array, 0)

img_array = img_array / 255.0

threshold = 0.7

predictions = model.predict(img_array)

predicted_class_index = np.argmax(predictions[0])

predicted_probability = predictions[0][predicted_class_index]

if predicted_probability >= threshold:

predicted_class_label = class_mapping_flower.get(predicted_class_index, ’Unknown’)

else:

predicted_class_label = ’Unknown’

return predicted_class_label

Streamlit app

st.title(’Flower Image Classification’)

uploaded_file = st.file_uploader("Choose a flower image", type=["jpg", "jpeg", "png"])

if uploaded_file is not None:

image = Image.open(uploaded_file)

st.image(image, caption=’Uploaded Image.’, use_column_width=True)

flower_model = load_flower_model()

predicted_class_flower = predict_flower(image, flower_model)

st.write(f"Prediction: {predicted_class_flower}")

Christ College (Autonomous), Irinjalakuda 26

