24 U	(Pages: 2)	Name :	
		Reg. No :	
	FIRST SEMESTER UG DEGREE EXAMINATION,	NOVEMBE	R 2024
	(FYUGP)		
	CC24U MAT1 CJ102 - ELEMENTARY NUMBI	ER THEORY	Y
	(B.Sc. Mathematics - Major Course)		
	(2024 Admission - Regular)		
Time	: 2.0 Hours		Maximum: 70 Marks
			Credit: 4
	Part A (Short answer questions)		
	Answer <i>all</i> questions. Each question carries 3	marks.	
1.	Show that every odd integer is of the form $6k + 1, 6k + 3$ or $6k + 5$.		[Level:2] [CO1]
2.	Find the $gcd(72, 140)$.		[Level:2] [CO1]
3.	Define Diophantine Equation. Give an example.		[Level:2] [CO2]
4.	Define prime and composite numbers. Give examples.		[Level:2] [CO2]
5.	Prove that for arbitrary integers a and b, $a \equiv b \pmod{n}$ if a and b non negative remainder when divided by n.	leave the sa	me [Level:2] [CO3]
6.	Prove that $a \equiv a \pmod{n}$ for arbitrary integer a.		[Level:2] [CO3]
7.	State Wilson's theorem.		[Level:1] [CO4]
8.	State Euler's theorem.		[Level:2] [CO5]
9.	Given integers a, b, c , show that $gcd(a, bc) = 1$ iff $gcd(a, b) = 1$ and	gcd(a,c) =	1. [Level:2] [CO5]
10.	List out some properties of Euler phi function.		[Level:2] [CO5]
			(Ceiling: 24 Marks)
	Part B (Paragraph questions/Problem Answer <i>all</i> questions. Each question carries 6	<i>.</i>	
11.	If <i>n</i> is odd, prove that $32 (a^2+3)(a^2+7)$.		[Level:2] [CO1]
12.	State and prove Euclid's lemma.		[Level:2] [CO1]
13.	Show that the quadratic equation $x^2 + 1 \equiv 0 \pmod{p}$, where p is an a solution iff $p \equiv 1 \pmod{4}$.	n odd prime, I	has [Level:1] [CO4]
14.	Prove that $13^{\#} + 1$ is not prime where $p^{\#}$ is the product of all prime than or equal to p .	nes that are 1	ess [Level:2] [CO2]

15. Determine all solutions in integers of the Diophantine equation 1776x + 1976y = 4152.	[Level:3] [CO2]
16. Find the solution of the system: $3x + 4y \equiv 5 \pmod{13}$ $2x + 5y \equiv 7 \pmod{13}$	[Level:3] [CO3]
17. Let p be a prime and suppose that p does not divides a. Then show that $a^{p-1} \equiv 1 \pmod{p}$.	[Level:2] [CO3]
 18. (a) Derive a formula to evaluate φ(n), for n > 1 (b) Using the formula evaluate φ(360). 	[Level:2] [CO5]
	(Ceiling: 36 Marks)
Part C (Essay questions)	(Ceiling: 36 Marks)
	(Ceiling: 36 Marks)
Part C (Essay questions)	
Part C (Essay questions) Answer any <i>one</i> question. The question carries 10 marks. 19. Prove that every positive integer $n > 1$ can be expressed as a product of primes; this	
