(FYUGP) CC24U MAT1 MN102 - CALCULUS OF SINGLE VARIABLE (B.Sc. Mathematics - Minor Course) (2024 Admission - Regular) Maximum: 70 Marks

Time: 2.0 Hours

Part A (Short answer questions)

Answer *all* questions. Each question carries 3 marks.

1.	Compute $\lim_{x \to -1} rac{x^2 + 6x + 5}{x^2 - 3x - 4}$	[Level:3] [CO1]
2.	Evaluate $\lim_{x \to 4} rac{\sqrt{x}-2}{3x-12}$	[Level:3] [CO1]
3.	$\operatorname{Find}\lim_{x\to+\infty}\frac{5x^2-4x}{2x^2+3}.$	[Level:3] [CO1]
4.	Find $\frac{dy}{dx}$ if $y = x \sin x$.	[Level:2] [CO2]
5.	Find $\frac{dy}{dx}$ if $y = \cos(x^3)$.	[Level:2] [CO2]
6.	Using definition of derivative find $f'(x)$ if $f(x) = x^3 - x$.	[Level:3] [CO2]
7.	Evaluate $\lim_{x \to 0+} x \ln x$.	[Level:2] [CO4]
8.	Find $\frac{dy}{dx}$ if $y = \sin^{-1} x + \cos^{-1} x$.	[Level:2] [CO3]
9.	Find the intervals on which $f(x) = x^2 - 4x + 3$ is increasing and the intervals on which it is decreasing.	[Level:3] [CO5]
10.	Locate the critical points of $f(x) = 4x^4 - 16x^2 + 17$ and identify which critical points are stationary points	[Level:2] [CO5]
		(Ceiling: 24 Marks)
	Part B (Paragraph questions/Problem)	
	Answer <i>all</i> questions. Each question carries 6 marks.	
11.	Let $f(t) = egin{cases} t+2, & t<0 \ t^3, & 0\leq t\leq 2. \ ext{Find the limits that exist. If the limit does not} \ 4t & t>2 \ \end{array}$	[Level:3] [CO1]

exist, explain why. (a) $\lim_{t \to 0} f(t)$ (b) $\lim_{t \to 1} f(t)$ (c) $\lim_{t \to 2} f(t)$

24U109

Name :

Reg. No :

Credit: 4

FIRST SEMESTER UG DEGREE EXAMINATION, NOVEMBER 2024

(Pages: 2)

12. Find a value of the constant k, if possible, that will make the functions continuous everywhere.

[Level:3] [CO1]

$$(a)f(x) = egin{cases} 9-x^2, & x \geq -3 \ rac{k}{x^2}, & x < -3 \ (b)g(x) = egin{cases} 9-x^2, & x \geq 0 \ rac{k}{x^2}, & x < 0 \ \end{bmatrix}$$

13. Discuss the continuity of the functions $f(x) = \sqrt{9 - x^2}$ and g(x) = |x| [Level:3] [CO1]

^{14.} Find an equation for the tangent line to the parabola $y = x^2$ at the point P(1, 1). [Level:2] [CO2]

- 15. State the product rule and use it to find $\frac{dy}{dx}$ if $y = (4x^2 1)(7x^3 + x)$. [Level:3] [CO2]
- 16. Use L'Hospital's Rule to evaluate (a) $\lim_{x \to 2} \frac{x^2 4}{x^2 + 2x 8}$ (b) $\lim_{x \to +\infty} \frac{2x 5}{3x + 7}$. [Level:3] [CO4]
- 17. Use logarithmic differentiation to find the derivative of $y = x\sqrt[3]{1+x^2}$. [Level:3] [CO3]
- 18. Determine the intervals on which $f(x) = 7 + 24x x^3$ is concave up and [Level:3] [CO5] concave down. Locate all the inflection points, if any.

(Ceiling: 36 Marks)

Part C (Essay questions)

Answer any *one* question. The question carries 10 marks.

- 19. (a) Use implicit differentiation to find $\frac{dy}{dx}$ if xy = 1. [Level:3] [CO3] (b) Use implicit differentiation to find $\frac{d^2y}{dx^2}$ if $x^3 + y^3 = 1$.
- 20. Sketch the graph of the equation $f(x) = 1 + 8x x^2$ and identify the locations [Level:3] [CO5] of the intercepts, relative extrema, and inflection points.

$$(1 \times 10 = 10 \text{ Marks})$$
