(Pages: 2)

Name :

Reg. No :

FIRST SEMESTER UG DEGREE EXAMINATION, NOVEMBER 2024

(FYUGP)

CC24U MAT1 MN103 - BASIC CALCULUS

(B.Sc. Mathematics - Minor Course)

(2024 Admission - Regular)

Time: 2.0 Hours

Maximum: 70 Marks

Credit: 4

Part A (Short answer questions)

Answer *all* questions. Each question carries 3 marks.

1. Check whether
$$\lim_{x \to 5} \frac{1}{x-5}$$
 exist or not. [Level:2] [CO2]

- 2. Find the Domain and Range of the function $f(x) = 4x^2$ [Level:2] [CO1]
- 3. Show that f(x) = 5x + 1 and $g(x) = \frac{x-1}{5}$ are inverse functions of each other. [Level:2] [CO1]
- 4. Find the slope of the tangent line to the graph of $f(x) = x^3 + 2x + 3$ at the point [Level:2] [CO3] (0,1).
- 5. Find the points at which the function $f(x) = \frac{6}{x}$ has discontinuities. [Level:2] [CO2]
- 6. Determine the slope of the tangent line to the graph of $\frac{x^2}{2} + \frac{y^2}{8} = 1$ at the point (1, 2). [Level:2] [CO3]
- 7. Determine the critical points for the function $f(x) = x^3 3x^2$. [Level:2] [CO4]
- 8. State Mean Value Theorem. [Level:1] [CO4]
- 9. State Mean Value Theorem for Integrals. [Level:2] [CO5]
- 10. Evaluate the definite integral.

(a)
$$\int_{1}^{2} (x^{2} + 1) dx$$

(b) $\int_{0}^{2} e^{x} dx$.

(Ceiling: 24 Marks)

[Level:2] [CO5]

Part B (Paragraph questions/Problem)

Answer *all* questions. Each question carries 6 marks.

11. Evaluate the following limits.

(a)
$$\lim_{x \to 0} \frac{\left(\frac{1}{3+x}\right) - \frac{1}{3}}{x}$$
 (b) $\lim_{x \to 4} \frac{\sqrt{x+5}-3}{x-4}$ (c) $\lim_{x \to 4} \frac{x-2}{x^2-4}$

[Level:2] [CO2]

- 12. (a) Solve $2^{2x+3} = 4^{3-x}$. (b) If $x^y = y^x$ and y = 2b, show that y = 2
- 13. A billiard Ball is dropped from a height of 100 feet. The ball's height s at time t is the [Level:2] [CO3] position function s = -16t² + 100, where s is measured in feet and t is measured in seconds. Find the average velocity over the following time interval.
 (a)[1, 1.1] (b)[1, 1.5]

^{14.} Differentiate the function $y = \left(\frac{3x-1}{x^2+3}\right)^2$. [Level:2] [CO3]

- 15. Apply the product rule to calculate the derivative of $h(x) = (3x 2x^2)(5 + 4x)$. [Level:3] []
- 16. Apply first derivative test to find the intervals on which the function is [Level:3] [CO4] $f(x) = 2x^3 - 15x^2 - 36x$ is increasing and decreasing.
- ^{17.} Determine the open interval on which the graph of $f(x) = \frac{x^2 + 1}{x^2 4}$ is concave upward [Level:2] [CO4] or concave downward.
- 18. Find the particular solution for the differential equation $f''(e^x) = 2$ that satisfies the [Level:2] [CO5] initial condition f'(0) = 2, f(0) = 5.

(Ceiling: 36 Marks)

[Level:2] [CO1]

Part C (Essay questions)

Answer any *one* question. The question carries 10 marks.

- ^{19.} Sketch the graph of the function $y = 2x^3 6x$. [Level:3] [CO4]
- 20. (a) Find the average value of f(x) = 4x² + x − 3 on the interval [1,3]. [Level:2] [CO5]
 (b) Find the derivative of F(x) = ∫₂^{x²} 1/t² dt.

$(1 \times 10 = 10 \text{ Marks})$
