24U113	(Pages: 2)	Name :	
		Reg. No :	
FIRST SEMESTER U	JG DEGREE EXAMINATION,	NOVEMBER	2024
	(FYUGP)		
CC24U MAT1 MN104 - MATHE			IBINATORICS
(B	.Sc. Mathematics - Minor Course))	
T ' A A X	(2024 Admission - Regular)		
Time: 2.0 Hours			Maximum: 70 Marks
			Credit: 4
	Part A (Short answer questions) questions. Each question carries 2	marks	
		5 marks.	
1. Which of the following are propositions?		[Level:2] [CO1]	
(a) The sun is a star(b) x+3=5			
(c) Come in.			
	sentence using universal quantif	ier	[Level:1] [CO1]
		101.	
3. Explain Set-Builder Notation. Give	example.		[Level:2] [CO2]
4. Is the collection $\{\{a,, n\}, \{y, \{a,, z, 0,, 9\}.$	$\ldots, z\}, \{0, 3\}, \{1, 2, 4, \ldots, 9\}\}$	is a partition o	f [Level:2] [CO2]
5. Define div function $g(x, y)$.			[Level:1] [CO3]
6. Define domain and codomain of a function $f: x \to y$.		[Level:1] [CO3]	
7. Define the logarithm function.		[Level:1] [CO3]	
8. Find the number of r-combinations of the set $\{a, b, c\}$, when r=0,1,2 or 3		or 3	[Level:2] [CO5]
9. Define Inclusion -Exclusion and addition principles of discrete probability.		bility.	[Level:2] [CO5]
10. Find the number of two letter words	s that begin with a vowel in Englis	sh alphabet .	[Level:2] [CO5]
			(Ceiling: 24 Marks)
Par	•t B (Paragraph questions/Problem	n)	
Answer all	questions. Each question carries	6 marks.	
11. Simplify the boolean expression			[Level:2] [CO1]

(a) $p \lor (\sim p \land q)$.

(b) $p \lor (p \lor q)$

- 12. Test the validity of the following argument. If I study, then I will not fail mathematics.
 - If I do not play basketball, then I will study.

But I failed mathematics.

Therefore I must have played basketball.

13. Define the infinite rays $(-\infty, a]$, $[a, \infty)$, $(-\infty, a)$ and (a, ∞) in set builder form.	[Level:2] [CO2]		
14. Draw the Venn Diagrams for the symmetric difference denoted by $A \triangle B$.	[Level:2] [CO2]		
15. If $f(x) = x^3 - x^2 + x + 1$ and $g(x) = x^4 + x^2$ Find $(f+g)(x)$ and $(fg)(x)$.	[Level:2] [CO3]		
16. If $A = \begin{bmatrix} -1 & 2 \\ 3 & 0 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 3 \\ 5 & -1 \end{bmatrix}$, and $C = \begin{bmatrix} 2 & 1 \\ 1 & 6 \end{bmatrix}$. Show that $(AB)C = A(BC)$	[Level:2] [CO4]		
17. (a) Find the number of words that can be formed by scrambling the letters of the word	[Level:3] [CO5]		
EDUCATION .			
(b) Prove that the cyclic permutations of n distinct items is $(n - 1)!$.			
18. Five marbles are drawn at random from a bag of seven green marbles and four red	[Level:3] [CO5]		
marbles. Find the probability that four are green and three are red.			
	(Ceiling: 36 Marks)		
Part C (Essay questions)			
Answer any <i>one</i> question. The question carries 10 marks.			
19. Verify that	[Level:2] [CO1]		
(a) $p \lor \sim (p \land q)$ is whether or not a tautology.			
(b) $(p \land q) \land \sim (p \lor q)$ is whether or not a contradiction.			
(c) $(p ightarrow q) \wedge (\sim q)] ightarrow \sim p$ is whether or not a tautology			
20. Find the number of positive integer less than 500 and divisible by two, three or five.	[Level:2] [CO2]		
	(1 × 10 = 10 Marks)		
