24 U	J 119 (F	Pages: 2)	Name :	•••••	
			Reg. No :		
FIRST SEMESTER UG DEGREE EXAMINATION, NOVEMBER 2024					
(FYUGP)					
CC24U CHE1 CJ101 - INORGANIC CHEMISTRY - I					
(B.Sc. Chemistry - Major Course)					
(2024 Admission - Regular)					
Time: 2.0 Hours				Ma	ximum: 70 Marks
					Credit: 4
Part A (Short answer questions)					
Answer <i>all</i> questions. Each question carries 3 marks.					
1.	Distinguish between the terms constant errors ar	ıd proportionate ε	errors.		[Level:2] [CO1]
2.	Define the terms mean, deviation from mean regard to a set of analytical measurements.	and average dev	viation from mea	n with	[Level:1] [CO1]
3.	Arrange the molecules HF, HCI, HBr and HI hydrogen-halogen bond in them. Justify your an			of the	[Level:4] [CO2]
4.	Although CO ₂ and H ₂ O are both triatomic mole while that of water has a non-zero value. Explain	_	moment of CO ₂	is zero	[Level:2] [CO2]
5.	Illustrate the use of the precipitation methonanoparticles with one example.	d in the prepar	ation of semicor	nductor	[Level:2] [CO3]
6.	How does quantum confinement become significant of quantum dots?	cant in determini	ng the optical pro	perties	[Level:1] [CO3]
7.	Mention how nanomaterials find application as of	drug delivery veh	icles in biomedic	ine.	[Level:2] [CO3]
8.	Explain the terms nanoparticles and nanomateri	als.			[Level:2] [CO3]
9.	What is graphene? Explain.				[Level:1] [CO3]
10.	Define equivalent mass of a base. How is the molecular mass? Illustrate with an example.	equivalent mass	of a base related	d to its	[Level:2] [CO4]
(Ceiling: 24 Marks)					

Part B (Paragraph questions/Problem)

Answer *all* questions. Each question carries 6 marks.

11. Distinguish between the terms qualitative analysis and quantitative analysis with suitable [Level:2] [CO1] examples.

12. Explain the variation of electron affinity along a period. [Level:2] [CO2]

13. What are the conditions for effective linear combination between atomic orbitals? [Level:1] [CO2]

14. Discuss the characteristics of ionic compounds. [Level:2] [CO2]

15. Calculate the Madelung constant for MgO from the following data: equilibrium [Level:3] [CO2] internuclear distance = 0.21 nm; Born exponent = 7; electronic charge = 1.6022 × 10-19 C; ε0 = 8.854 × 10-12 C2 m-1 J-1; lattice energy = -3940 kJ mol-1

16. Give a brief account of acid-base titrations.

[Level:1] [CO4]

17. Explain the term MSDS of chemicals and its significance.

[Level:2] [CO4]

18. What are the advantages of the double burette method used in titrimetry over the [Level:1] [CO4] conventional single burette method?

(Ceiling: 36 Marks)

Part C (Essay questions)

Answer any *one* question. The question carries 10 marks.

- 19. What is meant by orbital hybridization? Mention the salient features of the concept. [Level:1] [CO2] Explain the molecular geometries associated with sp² and sp³ hybridizations with illustrative examples.
- 20. Discuss LCAO-MO approach to bonding in (i) a homonuclear diatomic molecule; and [Level:2] [CO2] (ii) a heteronuclear diatomic molecule.

 $(1 \times 10 = 10 \text{ Marks})$
