(Pages: 2)

Name: Reg. No:

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2024

(CBCSS-UG)

(Regular/Supplementary/Improvement)

CC20U MTS5 B05 – ABSTRACT ALGEBRA

(Mathematics – Core Course)

(2020 Admission onwards)

Time: 2 ¹/₂ Hours

Maximum: 80 Marks Credit: 4

Part - A

Answer all questions. Each question carries 2 marks.

- 1. Find $\varphi(10)$ and $\varphi(42)$.
- 2. Find the product of cycles (1, 4, 2, 5) and (2, 6, 3).
- 3. Define an abelian group.
- 4. Give examples of (a) an infinite cyclic group and (b) a finite cyclic group.
- 5. Describe Klein four-group.
- 6. Show that $\mathbb{Z}_6 \cong \mathbb{Z}_2 \ge \mathbb{Z}_3$.

7. Find the order of $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ in $GL_2(\mathbb{R})$.

- 8. Define transposition. Express (1,2,3) (4,5) as a product of transpositions.
- 9. Show that the kernel of a homomorphism is one-to-one if and only if kernel = $\{e\}$.
- 10. Prove that the general linear group $GL_n(F)$ is a group under matrix multiplication.
- 11. Show that subgroups of index 2 are normal.
- 12. Determine whether or not * gives a group structure on the set \mathbb{Z} defined by a * b = ab.
- 13. Define a simple graph and give an example.
- 14. Define the unit in a ring R. Find the units in the ring \mathbb{Z}_6 .
- 15. Give an example of an integral domain that is not a field. Justify your answer.

(Ceiling: 25 Marks)

Part - B

Answer *all* questions. Each question carries 5 marks.

- 16. Consider the set of all differentiable functions from R to R. Define a relation '~' on this set by f ~ g if and only if the derivatives f '(x) and g'(x) are equal for all x ∈ R. Show that '~' is an equivalence relation on the set of differentiable functions.
- 17. Show that the set \mathbb{Z}_n of integers modulo n is an abelian group under the addition of congruence classes.

22U505

- 18. Draw the subgroup diagram of \mathbb{Z}_{15} .
- 19. Describe the dihedral group D₃.
- 20. If φ: G₁ → G₂ is a group homomorphism, then prove the following:
 a) φ(e) = e b) (φ(a))⁻¹ = φ(a⁻¹) for all a ∈ G₁.
- 21. Prove that any permutation in S_n , where n > 2, can be written as a product of transpositions.
- 22. Prove that for group G, then Aut(G) is a group under the composition of functions and Inn(G) is a normal subgroup of Aut(G).
- 23. Show that if D is an integral domain, then D[x] is also an integral domain.

(Ceiling: 35 Marks)

PART- C (Essay Type)

Answer any two questions. Each question carries 10 marks.

- 24. a) Prove that if (a, n) = 1, then $a^{\varphi(n)} \equiv 1 \pmod{n}$.
 - b) Prove that if p is a prime number then for any integer 'a' we have $a^p \equiv a \pmod{p}$.
- 25. a) State and prove Lagrange's theorem.

b) Prove that any group of prime order is cyclic.

- 26. Prove that every subgroup of a cyclic group is cyclic.
- 27. a) State and prove the second isomorphism theorem.
 - b) Show that $\mathbb{Z}_n/m\mathbb{Z}_n \cong \mathbb{Z}_m$ if m|n.

$(2 \times 10 = 10 \text{ Marks})$
