(Pages: 2)

Name:
Reg. No:

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2024

(CBCSS-UG)

(Regular/Supplementary/Improvement) CC20U MTS5 B06 – BASIC ANALYSIS

 $C_{200} = DASIC ANALISIS$

(Mathematics – Core Course) (2020 Admission onwards)

Time: 2 ¹/₂ Hours

Maximum: 80 Marks Credit: 4

Section A

Answer *all* questions. Each question carries 2 marks.

- Let S = {1,2} and T = {a, b, c}. Determine the number of different injections from S into T.
- 2. Determine the set A of $x \in R$ such that |2x + 3| < 7.
- 3. Find $\inf S$ and $\sup S$ if $S = \{1 (-1)^n; n \in N\}$.
- 4. Write the completeness property of *R*.
- If x and y are real numbers with x < y, then prove that there exists an irrational number z such that x < z < y.
- 6. State the nested intervals property.
- 7. Show that $\lim \left(\frac{1}{n}\right) = 0$.
- 8. Evaluate $\lim(\frac{2n+1}{n})$.
- 9. Check whether the sequence $X = ((-1)^n)$ is convergent or not.
- 10. Define a Cauchy sequence.
- 11. The intersection of infinitely many open sets in *R* is open. Is it true or false? Justify your answer.
- 12. What is the reciprocal of z = 2 3i.
- 13. Describe the set of points z in the complex plane that satisfy the equation

$$|z - i| = |z - 1|.$$

- 14. Express $-\sqrt{3} i$ in polar form.
- 15. Evaluate the boundary points of $\{z \in C | Re(z) \ge 1\}$.

(Ceiling: 25 marks)

22U506

Section B

Answer *all* questions. Each question carries 5 marks.

- 16. Let the function f be defined by $f(x) = \frac{2x^2+3x+1}{2x-1}$ for $2 \le x \le 3$. Find a constant M such that $|f(x)| \le M$ for all x satisfying $2 \le x \le 3$.
- 17. Prove that there does not exist a rational number r such that $r^2 = 2$.
- 18. State and prove Archimedean property.
- 19. Let $Y = (y_n)$ be defined inductively by $y_1 = 1$, $y_{n+1} = \frac{1}{4} (2y_n + 3)$ for $n \ge 1$. Show that $\lim Y = \frac{3}{2}$.
- 20. Show that every contractive sequence is a Cauchy sequence.
- 21. Prove that every Cauchy sequence converges in R.
- 22. Define principal argument of a complex number. Find arg(z) and Arg(z).
- 23. Find the three cube roots of z = i.

(Ceiling: 35 marks)

Section C

Answer any two questions. Each question carries 10 marks.

- 24. Suppose that S and T are sets and that $T \subseteq S$. If S is a finite set then show that T is also a finite set.
- 25. Prove that the set R of real numbers is not countable.
- 26. State and prove Bolzano-Weierstrass theorem
- 27. Find the image of the half plane $Re(z) \ge 2$ under the complex mapping w = iz and represent the mapping graphically.

 $(2 \times 10 = 20 \text{ Marks})$
