22U508

Name: Reg. No: Maximum : 60 Marks Credits : 3 Part A $x, y \geq 0$ $x \geq 0$

(Pages: 3) FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2024 (CBCSS - UG) (Regular/supplementary/Improvement) CC20U MTS5 B08 - LINEAR PROGRAMMING (Mathematics - Core Course) (2020 Admission onwards) Answer all questions. Each question carries 2 marks. 1. Write the canonical form of the Linear programming problem $2x - y \geq -1$ $3y - x \leq 8$ 2. Draw and shade the feasible region of the linear programming problem 2x + y < 8 $x + 2y \leq 10$ 4. True or false: Any LPP having unbounded constraint set is unbounded. Justify. 5. State the Canonical minimisation linear programming problem represented by the

Time: 2.00 Hours

- Maximise f(x, y) = -2y x. Subject to
- Maximise f(x, y) = 30x + 40y. Subject to

- 3. Give example of a bounded nonconvex subset of \mathbb{R}^2 .
- tableau.

x	2	-2	-1
у	-1	1	-1
-1	2	1	0
	$=s_1$	$=s_2$	=g

- 6. State the simplex algorithm anticycing rules.
- 7. Give example of a Non canonical maximisation linear programming problem.
- 8. State the dual canonical linear programming problem of Maximise : $g(y_1, y_2) = -y_2$. Subject to

- 9. Show that for any pair of feasible solutions of dual canonical LPP $g \ge f$.
- 10. State Von-Neumann Minimax Theorem.

(1)

 $y_-y_2 \geq 1$ $-y_1 + y_2 \geq 2$ $y_1, y_2 \geq 0$

Turn Over

11. Check whether the given transportation problem is balanced. if not balance the

		M_1	M_2	M_3	
	W_1 W_2	2	1	2	40
problem.	W_2	9	4	7	60.
	W_3	1	2	9	10
		50	60	30	

12. Find a permutation set of zeros in

1	0	0
0	1	0
1	0	1

(Ceiling: 20 Marks)

Part B Answer *all* questions. Each question carries 5 marks.

13. Solve by graphical method

Maximise: f(x, y) = 5x + 2y. Subject to

 $x + 3y \leq 14$ $2x + y \leq 8$ $x, y \geq 0$

14. Solve using simplex method

Maximise : f(x, y) = 2x - 4y. Subject to

15. Solve the non canonical linear programming problem. Maximise: f(x, y, z) = x + 2y + z. Subject to

$$\begin{aligned} x + y + z &= 6\\ x + y &\leq 1\\ x, z &\geq 0 \end{aligned}$$

- 16. State and Prove Duality Equation.
- 17. Explain Dual simplex algorithm for Minimum Tableaus
- 18. Solve the transportation problem

7	2	4	10
10	5	9	20
7	3	5	30 .
20	10	30	

19.	Solve	the	assignment	problem
TO .	00110	0110	approximitatio	problom

31	28	34	
41	14	36	
28	20	25	

Part C Answer any *one* question. The question carries 10 marks

20. Solve the canonical linear programming problem given below using simplex method. Maximise : f(x, y, z, w) = x + 2y + 2z - 4w. Subject to

21. Solve the given assignment problem using a)transportation algorithm b)Hungarian algorithm. And compare the solution.

2
9
1

22U508

(Ceiling: 30 Marks)

 $y+z-w \leq 2$ $x + y + z - w \leq 3$ $x, y, z, w \geq 0$

2]
7	
9	
9	

 $(1 \times 10 = 10 \text{ Marks})$