CC19P ECO1 C04 - QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS - I

(Economics)

(2019 Admission onwards)

Time : 3 Hours

24P157

Part A

Answer *all* questions. Each question carries 1/5 weightage.

1.	A negatively sloped curve moves:					
	(a) Upward	(b) Downward	(c) Vertically	(d) Horizontally		
2.	A square matrix A is said to be orthogonal if:					
	(a) $AA^T = 0 = A^T A$		(b) $AA^T = I = A^T A$			
	(c) $AA^T = -I = A^T A$	l	(d) None of these			
3.	The value of the determ	inant $\begin{vmatrix} a-b & a+b \\ a+b & a-b \end{vmatrix}$ is:				
	(a) -4 <i>ab</i>	(b) 4 <i>ab</i>	(c) $a^2 - b^2$	(d) None of these		
4.	Solve $4 = \frac{2}{3}x$:		1			
	$(a)\frac{8}{3}$	(b) 6	(c) $\frac{1}{6}$	(d) None of these.		
5.	The rank of the matrix	$\begin{pmatrix} 3 & 2 \\ 6 & 4 \end{pmatrix}$ is:				
	(a) 0	(b) 1	(c) 2	(d) None of these		
6.	$\lim_{x \to 0} \cos x$ is:					
	(a) 0	(b) 1	(c) sin x	(d) None of these		
7.	The slope of the supply function $S = 2 + 4P$ is:					
	(a) 0	(b) 2	(c) 4	(d) 7		
8.	The demand for a commodity is $D=44-7p$. The supply function is $S = 2p-10$, then the equilibrium price is					
	(a) 2	(b) 6	(c) 4	(d) 8		
9.	The point of intersection of demand and supply curves is known as:					
	(a) Break-even point	(b) Equlibrium point	(c) Isoquants	(d) None of these		
10.	If $u = e^{3xyz}$, then $\frac{\partial u}{\partial z}$ at x = 1, y = 1 is:					
	(a) $3e^{3z}$	(b) $3e^{3z}$	(c) e^{3z}	(d) $3e^{3xyz}$		

(1)

Turn Over

Name: Reg.No:

Maximum : 30 Weightage

FIRST SEMESTER M.A. DEGREE EXAMINATION, NOVEMBER 2024

(Pages: 3)

(CBCSS - PG)

(Regular/Supplementary/Improvement)

11.	Which of the following approximates the marginal impact on the objective function caused by a small					
	change in the constant of the constraint:					
	(a) the Legrange multip	lier	(b) the Jacobian			
	(c) the Hessian		(d) the determinant			
12.	The producers surplus when the supply function is $p = 10+2q$ and the equilibrium price 20 is:					
	(a) 35	(b) 25	(c) 100	(d) 50		
13.	The degree of the differential equation $\left(\frac{d^3y}{dx^3}\right)^2 + \frac{d^2y}{dx^2} - 6y = 0$ is:					
	(a) First	(b) Second	(c) Third	(d) None of these		
14.	The solution of the differential equation $(x^2+1)\frac{dy}{dx} + (y^2+1) = 0$ is:					
	(a) $y = 2 + x^2$	(b) $y = \frac{1+x}{1-x}$	(c) $y = \frac{1-x}{1+x}$	(d) $y = x(x-1)$		
15.	At the rate of 8.5% p.a. simple interest, a sum of Rs.4800 will earn how much interest in 2 years 3 months.					
	(a) 796	(b) 816	(c) 918	(d) 956		
				$(15 \times 1/5 = 3 \text{ Weightage})$		

Part B (Very Short Answer Questions)

Answer any *five* questions. Each question carries 1 weightage.

- 16. Define exponential function.
- 17. State limit of a function.
- 18. Given Q = 700 2P + 0.02y, where p = 25 and y = 5000. Find the price elasticity of demand.
- 19. The cost of producing xx units of a product is given by $C(x) = 600 + 90x 90 \log(x), x \ge 1$. Find the minimum average cost.
- 20. Find the total revenue function given $MR = 34 5Q 7Q^2$.
- 21. (i) Write down general formula for first order linear difference equation. (ii) Solve : $y_{t+1} + 3y_t = 2$ and $y_0 = 10$.
- The salary of employee increases every year by 7% of his initial salary and his initial basic salary is Rs.5000. Find his salary at the end of 10th year.
- 23. Define sinking fund.

$(5 \times 1 = 5 \text{ Weightage})$

Part C (Short Answer Questions)

Answer any seven questions. Each question carries 2 weightage.

24. Show that
$$\begin{vmatrix} 0 & ab^2 & ac^2 \\ a^2b & 0 & bc^2 \\ a^2c & b^2c & 0 \end{vmatrix} = 2a^3b^3c^3.$$

25. Obtain the inverse of matrix $\begin{bmatrix} 1 & -2 & 3 \\ 3 & -1 & 4 \\ 2 & 1 & -2 \end{bmatrix}$

26. Solve the system of equations by Crammer's rule.

 $2x - 3y + 5z = 11, \ 5x + 2y - 7z = -12, \ -4x + 3y + z = 5.$

- 27. Define rank of a matrix. Find the rank of the matrix $\begin{pmatrix} 2 & 3 & 1 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{pmatrix}$.
- 28. The demand function faced by a firm is p = 500 0.2x and its cost function is C = 25x + 10000 (p=price, x=output, C=cost). Find the output at which the profits of the firm are maximum. Also find the price it will charge.
- 29. Write short notes on: (i) Marginal Cost. (ii) Marginal Revenue (iii) Averagecost (iv) Average Revenue.
- 30. Given: $Z = x^4 e^{3y}$. Find all partial derivatives of second order.
- 31. Demand and Supply laws under pure competition are given by $p_d = 16 x^2$ and $p_s = 4 + x$. Determine consumer's surplus.

32. What is first order linear differential equation and then solve $2\frac{dy}{dx} - 8y = 16$; y(0) = 0.

33. Find the amount at the end of 7 th year for Rs. 5000 at 10% p.a., simple interest. What is the total amount of growth?

 $(7 \times 2 = 14 \text{ Weightage})$

Part D (Essay questions)

Answer any two questions. Each question carries 4 weightage.

- 34. Find the adjoint of the matrix and verify that A(AdjA) = |A|I if $A = \begin{pmatrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & -6 & -7 \end{pmatrix}$.
- 35. A firm has the following total revenue and total cost functions. $TR = 100x - x^2$, $TC = x^3 - \frac{57}{2}x^2$ where x is level of output. Find maximum profit.
- 36. The cost of producing 'y' tons of steel is given by C(Y) = y³ + 2y² 6y + 4 Obtain the following.
 (i) Slope of marginal cost at y = 6. (ii) Average cost. (iii) Average variable cost. (iv) The value of 'y' for which marginal cost is same as average variable cost.
- 37. (i) Write down differential equations of the type limited and unlimited growth.
 - (ii) The rate at which the volume of sales(Q) for a new type of printer increase after an advertising campaign is given by the equation $\frac{dQ}{dt} = 0.04(700 Q)$, given that Q=0 at t=0. Q is the number of printers sold, t is the time in years. Solve the differential equation to obtain an expression for Q in terms of t.

 $(2 \times 4 = 8 \text{ Weightage})$
