24P102

(Pages: 2)

Name:

Reg.No:

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2024

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH1 C02 - LINEAR ALGEBRA

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Let V be a vector space over the field F and α be any vector in V then prove that $(-1)\alpha = -\alpha$.
- 2. Describe the subspaces of \mathbb{R}^3 .
- 3. Let V be vector space over the field and let T be a linear transformation from V into V. Prove that the inverse function T^{-1} is a linear transformation from V onto V.
- 4. Let T be a linear operator on \mathbb{R}^2 defined by $T(x_1, x_2) = (2x_1 + x_2, x_1 3x_2)$. Find the matrix of T in the standard ordered basis for \mathbb{R}^2 .
- 5. Define transpose of a linear transformation. Prove that transpose of a linear transformation is again a linear transformation.
- 6. Define T conductor of α into W. Prove that $S(\alpha, W)$ is an ideal in the polynomial algebra F[x].
- 7. Let (|) be the standard inner product on \mathbb{R}^2 . Let $\alpha = (1,2), \beta = (-1,1)$. If γ is a vector such that $(\alpha|\gamma) = -1$ and $(\beta|\gamma) = 3$, find γ .
- 8. Prove that an orthogonal set of non-zero vectors is linearly independent.

$(8 \times 1 = 8$ Weightage)

Part B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT - I

- 9. If V is a finite dimensional vector space, then show that any two bases of V have the same number of elements.
- 10. Let $\mathcal{B} = \{\alpha_1, \alpha_2, \alpha_3\}$ be the ordered basis for \mathbb{R}^3 consisting of $\alpha_1 = (1, 0, -1), \alpha_2 = (1, 1, 1), \alpha_3 = (1, 0, 0)$. What are the coordinates of the vector (a, b, c) in the ordered basis \mathcal{B}
- 11. Let V and W be vector spaces over the field F and let T be a linear transformation from V in to W. Suppose that V is finite dimensional Then prove that $rank(T) + nullity(T) = \dim V$

UNIT - II

- 12. Find the dual basis of \mathcal{B} . where $\mathcal{B} = \{\alpha_1, \alpha_2, \alpha_3\}$ be a basis for C^3 defined by $\alpha_1 = (2, 0, -2), \alpha_2 = (1, 1, 1), \alpha_3 = (1, 1, 0).$
- 13. Let V be a finite dimensional vector space over the field F. . For each vector α in V define $L_{\alpha}(f) = f(\alpha), f \in V^*$. Then prove that the mapping $\alpha \to L_{\alpha}$ is an isomorphism of V onto V^{**} .
- 14. Let T be a linear operator on the finite dimensional space V. Let c₁, c₂,...c_k be the distict characteristic values of T and let W_i be the space of characteristic vectors associated with the characteristic value c_i. If W = W₁ + W₂ + ... + W_k, then prove that dim W = dim W₁ + dim W₂ + ... + dim W_k

UNIT - III

15. If $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$, then prove that there exist k linear operators E_1, E_2, \ldots, E_k on V such that

1. Each E_i is a projection;	2. $E_i E_j = 0$ if $i eq j$
3. $I = E_1 + E_2 + \cdots + E_k$	4. The range of E_i is W_i

Conversely, prove that if $E_1, E_2, \dots E_k$ are *k* linear operators on *V* which satisfy conditions (i), (ii), (iii) and if we let W_i be the range of E_i , then prove that $V = W_1 \oplus W_2 \oplus \dots \oplus W_k$

- 16. If V is an inner product space then for any vectors α and β in V prove that $|(\alpha|\beta)| \leq ||\alpha|| ||\beta||$
- 17. If W is a finite dimensional subspace of an inner product sapace V and $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ is any orthonormal basis for W, then prove that the vector $\alpha = \sum_{k=1}^m \frac{(\beta | \alpha_k)}{||\alpha_k||^2} \alpha_k$ is the unique best approximation to β by vectors in W..

 $(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any two questions. Each question carries 5 weightage.

- 18. Show that dim W_1 + dim W_2 = dim $(W_1 \cap W_2)$ + dim $(W_1 + W_2)$ where W_1 and W_2 are finite dimensional subspace of a vector space.
- 19. (a) Let T be a linear transformation from V in to W. where V and W are finite dimensional and $\dim V = \dim W$ then prove that T is non-singular if and only if T is onto
 - (b) Show that every n dimensional vector space over the field F is isomorphic to the space F^n .
- 20. Let T be a linear operator on a finite dimensional vector space V. If f is the characteristic polynomial for T, prove that the minimal polynomial divides the characteristic polynomial for T.
- 21. (a) Prove that the mapping β → β Eβ is the orthogonal projection of V on W[⊥], where V is an inner product space, W a finite dimensional subspace, and E the orthogonal projection of V on W.
 (b) State and Prove Bessel's Inequality.
 - $(2 \times 5 = 10 \text{ Weightage})$