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Part A
Answer all questions. Each question carries 1 weightage.

1.  Find all integers  such that .

2.   Prove that the Mobius function is multiplicative but not completely multiplicative.

3.  If  and  are arithmetical functions and let   and

vThen show that 

4.  Prove that    implies , where  denotes the  prime. 

5.  Prove that .

6.  Define Shift cryptosystem.  Find the plain text of the cipher text 'HPHTWWXPPE'  in the shift
cryptosystem with  and .

7.  Find the inverse of the matrix .

8.  How will you authenticate a message in public key cryptosystem?

   (8 × 1 = 8 Weightage)
Part B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT - I

9.  If  is an arithmetical function with , then prove that there exists a unique arithmetical function
 such that 

Also show that  and 

10.  Derive the divisor sum of Mangoldt function and then deduce that  

11.  State and prove Selberg identity.
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UNIT - II

12.   Show that for 

13.  Prove that for   and .

14.  Show that there is a constant   such that 

UNIT - III

15.  Let  be an odd prime. Then prove that 

16.  For every odd prime  , prove that .

17.   Solve the  system: 

(6 × 2 = 12 Weightage)
Part C

Answer any two questions. Each question carries 5 weightage.

18.  Show that 

                 
               .

19.  State and prove Euler's summation formula. Hence show that
    , if  where is the Remann zeta functon.

20.  State and prove Shapiro's Tauberian Theorem.

21.  State and prove quadratic reciprocity law for Legendre's symbol and hence determine whether 219 is a
quadratic residue modulo 383.

(2 × 5 = 10 Weightage)
 

*******
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α ∑
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