24P105

(Pages: 2)

Name:

Reg.No:

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2024

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH1 C05 - NUMBER THEORY

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

- 1. Find all integers n such that $\phi(n) = \frac{n}{2}$.
- 2. Prove that the Mobius function is multiplicative but not completely multiplicative.
- 3. If f and g are arithmetical functions and let h = f * g, $H(x) = \sum_{n \le x} h(n)$, $F(x) = \sum_{n \le x} f(n)$ and $G(x) = \sum_{n \le x} g(n)$. vThen show that $H(x) = (f \circ G)(x) = (g \circ F)(x)$
- 4. Prove that $\lim_{n \to \infty} \frac{P_n}{n \log n} = 1$ implies $\lim_{x \to \infty} \frac{\pi(x) \log \pi(x)}{x} = 1$, where P_n denotes the n^{th} prime.
- 5. Prove that $\forall \ x \geq 1, \ \sum_{n \leq x} \tau(\frac{x}{n}) = x \log x + O(x).$
- 6. Define Shift cryptosystem. Find the plain text of the cipher text 'HPHTWWXPPE' in the shift cryptosystem with b = 11 and N = 26.
- 7. Find the inverse of the matrix $\begin{bmatrix} 197 & 62\\ 603 & 271 \end{bmatrix} \pmod{841}$.
- 8. How will you authenticate a message in public key cryptosystem?

 $(8 \times 1 = 8$ Weightage)

Part B

Answer any *two* questions from each unit. Each question carries 2 weightage.

UNIT - I

9. If f is an arithmetical function with f(1) ≠ 0, then prove that there exists a unique arithmetical function f⁻¹ such that f * f⁻¹ = I.
Also show that f⁻¹(1) = 1/f(1) and f⁻¹(n) = -1/f(1) ∑_{d/n} f(n/d) f(d), ∀n > 1.

10. Derive the divisor sum of Mangoldt function and then deduce that $\forall n \ge 1$, $\Lambda(n) = \sum_{d \ne n} \mu(d) \log(\frac{n}{d})$.

11. State and prove Selberg identity.

UNIT - II

- 12. Show that for $x > 0, \ 0 \le \frac{\psi(x)}{x} \frac{\tau(x)}{x} \le \frac{(\log x)^2}{2\sqrt{x}\log 2}$
- 13. Prove that for $x \ge 2, \tau(x) = \pi(x) \log x \int_{2}^{x} \frac{\pi(t)}{t} dt$ and $\pi(x) = \frac{\tau(x)}{\log x} + \int_{2}^{x} \frac{\tau(t)}{t \log^{2} t} dt$.

14. Show that there is a constant A such that $\sum_{p \le x} \frac{1}{p} = \log \log x + A + O(\frac{1}{\log x}), \ \forall \ x \ge 2.$

UNIT - III

- 15. Let p be an odd prime. Then prove that $\forall n, (n|p) \equiv n^{\frac{p-1}{2}} (\mod p)$.
- 16. For every odd prime p, prove that $(2|p) = (-1)^{\frac{p^2-1}{8}}$.
- 17. Solve the system: $x + 3y \equiv 1 \pmod{26}$ $7x + 9y \equiv 1 \pmod{26}$

 $(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any two questions. Each question carries 5 weightage.

- 18. Show that (a) $\forall n \ge 1$, $\sum_{d/n} \lambda(d) = \begin{cases} 1, & \text{if } n \text{ is a square} \\ 0, & \text{otherwise} \end{cases}$ (b) $\lambda^{-1}(n) = |\mu(n)|$ (c) $\sigma_{\alpha}^{-1}(n) = \sum_{d/n} d^{\alpha} \mu(d) \mu(\frac{n}{d}).$
- 19. State and prove Euler's summation formula. Hence show that
 - $orall x \geq 1, \ \sum_{n\leq x}rac{1}{n^s} = rac{x^{1-s}}{1-s} + \zeta(s) + O(x^{-s}), ext{ if } s>0, s
 eq 1 ext{ where } \zeta ext{ is the Remann zeta function.}$
- 20. State and prove Shapiro's Tauberian Theorem.
- 21. State and prove quadratic reciprocity law for Legendre's symbol and hence determine whether 219 is a quadratic residue modulo 383.

 $(2 \times 5 = 10 \text{ Weightage})$
