(Pages: 2)

Name: Reg. No:

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2024

(CBCSS-PG)

(Regular/Supplementary/Improvement)

CC22P MST3 E19 - STATISTICAL MACHINE LEARNING

(Statistics)

(2022 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

PART A

Answer any *four* questions. Each question carries 2 weightage.

- 1. What are the key features of Jupyter Notebook?
- 2. Describe different strategies to handle missing values in a dataset.
- 3. What is skewed data, and why is it problematic in machine learning. Describe methods to handle skewed data. How does handling skewed data impact model performance.
- 4. Distinguish parametric and non-parametric method of modelling.
- 5. Describe training set and test set.
- 6. Explain a decision tree.
- 7. How do you assess the goodness-of-fit of a Cox Proportional Hazards model?

 $(4 \times 2 = 8$ Weightage)

PART B

Answer any *four* questions. Each question carries 3 weightage.

- 8. Explain the application of codes remove and append used in python and illustrate with example.
- 9. Discuss the primary methods used for binning numeric variables in data analysis. Give an example.
- 10. Describe the process of EDA. Explain the steps involved in EDA and how they contribute to understanding the dataset.
- 11. Explain prediction and inference models followed in machine learning.
- 12. Explain what it means that adjusted R square is much less than R square.
- 13. Discuss KNN algorithm.
- 14. Write a short note on survival analysis and censoring time.

$(4 \times 3 = 12 \text{ Weightage})$

23P363

PART C

Answer any *two* questions. Each question carries 5 weightage.

- 15. a) Elaborate on both graphical methods and numerical methods for identifying outliers.
 - b) You are given a dataset consisting of two features, X_1 and X_2 with different ranges.

Perform Min-Max Transformation and Z-score Standardization on these features.

X_1	10	15	8	12	20
<i>X</i> ₂	500	750	600	700	900

- 16. Compare and contrast supervised and unsupervised learning in statistical learning. Provide examples of each
- 17. Discuss simple regression model. Explain why an analyst may prefer a confidence interval to a hypothesis test.
- 18. Explain linear discriminant analysis for p > 1.

 $(2 \times 5 = 10 \text{ Weightage})$
