(Pages: 2)

Name:	••••	••	••	••	••	••	• •	•	••	••	•	•••	•	••	••
Reg. N	o:														

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2024 (CBCSS-PG)

(Regular/Supplementary/Improvement)

CC19P MTH3 C11 – MULTIVARIABLE CALCULUS AND GEOMETRY

(Mathematics)

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

PART A

Answer *all* questions. Each question carries 1 weightage.

- 1. Suppose X is a vector space, dim X = n and X has a basis. Show that every basis of X consists of n vectors.
- 2. Suppose f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m and f is differentiable at a point $x \in E$. Show that the partial derivatives $(D_i f_i)(x)$ exists for $1 \le j \le n, 1 \le i \le m$.
- 3. Prove that a linear operator A on \mathbb{R}^n is invertible if $det[A] \neq 0$.
- 4. Determine whether the curve $\gamma(t) = (e^{kt} \cos t, e^{kt} \sin t)$ is regular or not.
- 5. Show that any open disc in the *xy*-plane is a surface.
- 6. Let $f: S_1 \to S_2$ be a diffeomorphism. If σ_1 is an allowable surface patch on S_1 , then show that $f \circ \sigma_1$ is an allowable surface patch on S_2 .
- 7. Show that the area of a surface patch is unchanged by reparametrization.
- 8. Define the normal curvature and geodesic curvature of a unit-speed curve γ on an oriented surface S.

$(8 \times 1 = 8 Weightage)$

PART B

Answer any *two* questions from each unit. Each question carries 2 weightage.

UNIT I

- 9. Prove that to every $A \in L(\mathbb{R}^n, \mathbb{R}^1)$ corresponds a unique $y \in \mathbb{R}^n$ such that Ax = x, y.
- 10. State and prove the contraction principle.
- 11. If [A] and [B] are $n \times n$ matrices, then show that det([A][B]) = det[A] det[B].

UNIT II

12. Show that a parametrized curve has a unit-speed reparametrization if and only if it is regular.

23P301

- 13. Let γ be a unit-speed curve in R^3 with constant curvature and zero torsion. Prove that γ is a parametrization of (part of) a circle.
- 14. Show that the Möbius band is not orientable.

UNIT III

- 15. Show that the level surface $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^4 = 1\}$ is a smooth surface.
- 16. Compute the second fundamental form of $\sigma(u, v) = (u, v, u^2 + v^2)$.
- 17. State and prove the Meusnier's theorem.

$(6 \times 2 = 12$ Weightage)

PART C

Answer any two questions. Each question carries 5 weightage.

- 18. State and prove the implicit function theorem.
- 19. i) Show that any regular plane curve with constant curvature is part of a circle.
 - ii) Compute the curvature κ , principal normal vector \boldsymbol{n} , binormal vector \boldsymbol{b} and torsion τ of the curve $\gamma(t) = \left(\frac{4}{5}\cos t, \ 1 \sin t, -\frac{3}{5}\cos t\right)$.
- 20. i) Find the tangent plane of the surface patch $\sigma(u, v) = (u, v, u^2 v^2)$ at (1, 1, 0).
 - ii) Show that the transition maps of a smooth surface are smooth.
- 21. i) Show that every point on the unit sphere S^2 is umbilic.

ii) Let S be a (connected) surface of which every point is an umbilic. Show that S is an open subset of a plane or a sphere.

 $(2 \times 5 = 10 \text{ Weightage})$
