23P302

(Pages: 2)

Name:

Reg.No:

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2024

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH3 C12 - COMPLEX ANALYSIS

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

1. Find the fixed points of a translation and the inversion on C_{∞} .

2. Show that a Mobius transformation takes circles onto circles.

3. Define an orientation for a circle Γ of C_{∞} . Also state the orientation principle.

4. Let
$$\gamma: [0, 2\pi] \to C$$
 given by $\gamma(t) = e^{it}$. Evaluate $\int_{\gamma} \frac{1}{z} dz$.

- 5. State first and second versions of Cauchy's integral formula.
- 6. When an isolated singularity is said to be removable? Prove that $f(z) = \frac{\sin z}{z}$ has a removable singularity at z = 0.

7. Using residue theorem show that $\int_0^\infty \frac{1}{1+x^2} dx = \frac{\pi}{2}.$

8.

Suppose f and g are meromorphic in a neighbourhood of B(a; R) with no zeros or poles in the circle $\gamma = \{z : |z - a| = R\}$. If Z_f, Z_g, P_f, P_g are the number of zeros and poles of f and g inside γ counted according to their multiplicities and if $|f(z) + g(z)| \le |f(z)| + |g(z)|$ on γ , prove that $Z_f - P_f = Z_g - P_g$. (8 × 1 = 8 Weightage)

Part B

Answer any *two* questions each unit. Each question carries 2 weightage.

UNIT - I

9. Consider the stereographic projection between C_{∞} and $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\}$. Let $z = x + iy \in \mathbb{C}$ and $Z = (x_1, x_2, x_3)$ be the corresponding point of S. Express $Z = (x_1, x_2, x_3)$ in terms of

z. Also prove that
$$d(z, z') = \frac{2|z-z|}{\left[(1+|z|^2)(1+|z'|^2)\right]^{1/2}}$$
 for $z, z' \in \mathbb{C}$.

If $\sum a_n(z-a)^n$ is a power series with radius of convergence *R*. Prove that $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$. provided

the limit exists.

11. Let $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ have radius of convergence R > 0. Prove that for each $k \ge 1$ the series $\sum_{n=k}^{\infty} n(n-1)(n-2)\dots(n-k+1)a_n (z-a)^{n-k}$ has radius of convergence R and for $n \ge 0, a_n = \frac{1}{n!} f^{(n)}(a).$

UNIT - II

12. Let $f: G \to C$ be analytic and suppose $B(a; r) \subset G$, where r is positive. Also let $y(t) = a + re^{it}, \ 0 \le t \le 2\pi$. Prove that $f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} dw$ for |z-a| < r.

- 13. Let G be a connected open set and $f: G \to C$ be analytic. Prove that the following statements are equivalent,
 - (i) $f \equiv 0$ on G.
 - (ii) There is a point $a \in G$ such that $f^{(n)}(a) = 0$ for all non-negative integer n.
 - (iii) The set $\{z \in G : f(z) = 0\}$ has a limit point in G.
- 14. If G is simply connected and $f: G \to C$ is analytic in G. Prove that f has a primitive in G.

UNIT - III

- 15. Find the residue at the poles of the function $f(z) = \frac{1}{z^4 + 1}$.
- 16. Prove that if G is a region and $f: G \to C$ is analytic function such that there is a point a in G with $|f(a)| \ge |f(z)|$ for all z in G, then f is a constant.
- 17.

Suppose *f* is analytic on $D = \{z : |z| < 1\}$ and $|f(z)| \le 1$ for $z \in D$. Prove that $|f'(a)| \le \frac{1 - |f(a)|^2}{1 - |a|^2}$ for $a \in D$. Also the equality holds exactly when $f(z) = \varphi_{-a}(c\varphi_a(z))$ where a = f(a) for some $c \in C$ with |c| = 1 and $\varphi_a(z) = \frac{z - a}{-}$.

$(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any two questions. Each question carries 5 weightage.

- 18. (a) Let G be either the whole plane C or some open disk and if $u: G \to \mathbb{R}$ is a harmonic function. Show that u has a harmonic conjugate.
 - (b) Show that the function $u(x, y) = e^{x}(x\cos y y\sin y)$ is harmonic. Find its harmonic conjugate.

10.

- 19. Let $\gamma: [a, b] \to C$ is of bounded variation and suppose that $f: [a, b] \to C$ is continuous. Prove that there is a complex number I such that for every $\epsilon > 0$ there is a $\delta > 0$ such that when $P = \left\{ t_0 < t_1 < \ldots < t_m \right\}$ is a partition of [a, b] with $||P|| = max \left\{ (t_k t_{k-1}): 1 \le k \le m \right\} < \delta$ then $\left| I \sum_{k=1}^m f(\tau_k) \left[\gamma(t_k) \gamma(t_{k-1}) \right] \right| < \epsilon$ for whatever choice of points $\tau_k, t_{k-1} \le \tau_k \le t_k$.
- 20. Let G be an open set and $f: G \to C$ be a differentiable function. Prove that f is analytic on G.
- 21. Let $f(z) = \frac{1}{z(z-1)(z-2)}$. Give the Laurent series expansion of f(z) in each of the annuli: (a) ann(0, 0, 1); (b) ann(0, 1, 2); (c) $ann(0, 2, \infty)$.

 $(2 \times 5 = 10 \text{ Weightage})$
