23P303

(Pages: 2)

Name:

Reg.No:

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2024

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH3 C13 - FUNCTIONAL ANALYSIS

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Define subspace of a linear space. Show that if $A: E_1 \to E_2$ is a linear map then Im A is a subspace of E_2 .
- 2. Define Cauchy sequence in a normed space X. Prove that if x_n is a Cauchy sequence, then prove that it is a bounded sequence.
- 3. Prove that inner product is a continuous function.
- 4. Show that if f_i is a complete system in a Hilbert space H and $x \perp f_i$, then x = 0.
- 5. Show that for every closed subspace of $H, L \oplus L^{\perp} = H$.
- 6. Define a bounded functional. If f is a bounded linear functional then prove that $|f(x)| \le ||f||^* ||x||$.
- 7. Show that any bounded set in \mathbb{R}^n is relatively compact.
- 8. Define Norm convergence and strong convergence in L(X).

 $(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any *two* questions each unit. Each question carries 2 weightage.

UNIT - I

- 9. Define a norm on c[0, 1] and prove that it is a norm.
- 10. Let O be an openset then prove that $F = O^c$ closed. Also prove if F is closed set then F^c is open.
- 11. Let X_0 be a closed subspace of X. Verify X/X_0 is a normed space together with the norm defined by $||[x]|| = \inf_{y \in X_0} ||x - y||$

UNIT - II

- 12. Show that for any $x \in H$ and any orthonormal system $\{e_i\}_1^\infty$, there exists a $y \in H$ such that $y = \sum_{i=1}^\infty \langle x, e_i \rangle e_i$
- 13. Let M be a convex closed set in H. Show that there exists a unique $y \in M$ such that $ho(x,M) = \|x-y\|$

14. Consider $f \in E^{\#} - \{0\}$. Then show that 1. Codim ker f = 1

2. If $f,g \in E^{\#} - \{0\}$ and ker $f = \ker g$, then there exists $\lambda \neq 0$ such that $\lambda f = g$.

UNIT - III

- 15. Prove that for any normed space X, the dual space X^* is always complete.
- 16. Let $L \hookrightarrow X$ be a subspace of a normed space X and let $x \in X$ such that dist (x, L) = d > 0. Then, prove that there exists $f \in X^*$ such that ||f|| = 1, f(L) = 0 and f(x) = d.
- 17. If ||A|| = q < 1, then prove that (I A) is invertible and $(I A)^{-1} = \sum_{0}^{\infty} A^{k}$. More over $||(I A)^{-1}|| \le \frac{1}{1 ||A||}$.

 $(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any two questions. Each question carries 5 weightage.

- 18. Prove that the Hilbertspace is seperable if and only if there exist a complete orthonormal system $\{e_i\}_{i\geq 1}$
- 19. Let X be a normed space and let Y be a complete normed space. Then show that $L(X \to Y)$ is a Banach Space.
- 20. Prove that M is relatively compact if and only if for every $\varepsilon > 0$, there exists a finite ε net in M.
- 21. State and prove *Hölder's* inequality and Minkowski's inequality for the scalar sequences.

 $(2 \times 5 = 10 \text{ Weightage})$
