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Part A
Answer all questions. Each question carries 1 weightage.

1.  Define subspace of a linear space. Show  that if  is a linear map then  is a subspace
of .

2.  Define Cauchy sequence in a normed space . Prove that if  is a Cauchy sequence, then prove that it
is a bounded sequence.

3.  Prove that inner product is a continuous function.

4.  Show  that if  is a complete system in a Hilbert space  and , then 

5.  Show that for every closed subspace of , .

6.  Define a bounded  functional.  If  is a bounded linear functional then prove that .

7.  Show  that any bounded set in  is relatively compact.

8.  Define Norm convergence and strong convergence in .

   (8 × 1 = 8 Weightage)
Part B

Answer any two questions each unit. Each question carries 2 weightage.
UNIT - I

9.  Define a norm on  and prove that it is a norm.

10.  Let  be an openset  then prove that  closed . Also prove if   is closed  set then  is open.

11.  Let    be  a closed subspace of ..  Verify   is a normed space  together with the norm defined
by 

UNIT - II

12.  Show that for any  and any orthonormal system  there exists a   such that 

13.  Let  be a convex  closed set in . Show that there exists a unique  such that 
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14.  Consider . Then show  that 
   1. Codim 
   2. If  and  , then there exists  such that 

UNIT - III

15.  Prove that for any normed space , the dual space  is always complete.

16.  Let  be a subspace of a normed space  and let . Then, 
prove that there exists such that  and 

17.  If   then prove that    is invertible and . More over 

. 

(6 × 2 = 12 Weightage)
Part C

Answer any two questions. Each question carries 5 weightage.

18.  Prove that the Hilbertspace  is seperable if and only if there exist a complete orthonormal system 
 

19.  Let  be a normed space and let  be a complete normed space. Then show  that  is a
Banach Space.

20.  Prove that   is relatively compact if and only if for every there exists a finite - net in .

21.  State and prove  inequality and Minkowski’s inequality for the scalar sequences.

(2 × 5 = 10 Weightage)
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