(Pages: 2)

Name:	••	•••	•••	••	••	••	••	•	••	•	•	•••	••	
Reg. No:		••								•				

23P304

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2024

(CBCSS-PG)

(Regular/Supplementary/Improvement)

CC19P MTH3 C14 - PDE AND INTEGRAL EQUATIONS

(Mathematics)

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

PART A

Answer all questions. Each question carries 1 weightage.

- 1. Solve the equation $u_x + u_y = 2$ subject to the initial condition $u(x, 0) = x^2$.
- 2. Show that the Cauchy problem $u_x + u_y = 1$, u(x, x) = x has infinitely many solutions.
- 3. If u(x, y) is a harmonic function in a domain *D*, then show that $u \in C^{\infty}(D)$.
- 4. State the necessary condition for the existence of a solution to the Neumann problem.
- 5. Show that $\frac{d^n}{dx^n}I_n(x) = (n-1)!f(x)$, where $I_n(x) = \int_a^x (x-\xi)^{n-1}f(\xi)d\xi$.
- 6. Using Green's function, transform the differential equation $\frac{d^2y}{dx^2} + xy = 1$, y(0) = y(1) = 0 to an integral equation.
- 7. Make use of an appropriate formula to show that the iterative procedure will converge if $|\lambda| < 3$ for the integral equation $y(x) = \lambda \int_0^1 x \,\xi \, y(\xi) d\xi + 1$.
- 8. Consider the problem $u_{tt} u_{xx} = 0, -\infty < x < \infty, t > 0$

$$u(x,0) = f(x) = \begin{cases} 0, & -\infty < x < -1\\ x+1, & -1 \le x \le 0\\ 1-x, & 0 \le x \le 1\\ 0, & 1 < x < \infty \end{cases}$$
$$u_t(x,0) = g(x) = \begin{cases} 0, & -\infty < x < -1\\ 1, & -1 \le x \le 1\\ 0, & 1 < x < \infty \end{cases}$$

Evaluate u at the point
$$(1, \frac{1}{2})$$
. Also discuss the smoothness of the solution $u(x, y)$.

$(8 \times 1 = 8$ Weightage)

PART B

Answer any *two* questions from each unit. Each question carries 2 weightage.

UNIT-1

9. Solve the eikonal equation $u_x^2 + u_y^2 = n_0^2$, $(n_0 \text{ is a constant})$ with the initial condition u(x, 2x) = 1.

- 10. Reduce to canonical form $u_{xx} 2\sin x u_{xy} \cos^2 x u_{yy} \cos x u_y = 0$ and find the general solution.
- 11. Show that for a fixed T > 0, the Cauchy problem for the one-dimensional homogeneous wave equation in the domain -∞ < x < ∞, 0 ≤ t ≤ T is well posed for f ∈ C²(ℝ), g ∈ C¹(ℝ).

UNIT-2

- 12. Solve $u_t u_{xx} = 0$, $0 < x < \pi$, t > 0 subject to $u(0,t) = u(\pi,t) = 0$, $t \ge 0$ and $u(x,0) = \begin{cases} x, & 0 \le x \le \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} \le x \le \pi \end{cases}$.
- 13. State and prove the weak maximum principle.
- 14. Let $u \in C_H$ be a solution of the heat equation $u_t = k\Delta u$, t > 0 in Q_T . Prove that u achieves its maximum on $\partial_P Q_T$.

UNIT-3

- 15. Write a short note on Neumann series.
- 16. Find the characteristic values and corresponding characteristic functions for the equation $y(x) = \lambda \int_0^{2\pi} \sin(x + \xi) y(\xi) d\xi.$
- 17. Show that y'' + A(x)y' + B(x)y = f(x) with the initial conditions $y(a) = y_0$, $y'(a) = y_0'$ can be transformed in to a Volterra equation of second kind.

$(6 \times 2 = 12 \text{ Weightage})$

PART C

Answer any two questions. Each question carries 5 weightage.

- 18. Using the method characteristics, solve $-yu_x + xu_y = u$ subject to the initial condition $u(x, 0) = \psi(x)$.
- 19. Solve the problem $u_{tt} u_{xx} = t^7$ subject to u(x, 0) = 2x + sinx, $u_t(x, 0) = 0$, $-\infty < x < \infty$, t > 0.
- 20. Solve $u_{tt} 4u_{xx} = 0$, 0 < x < 1, t > 0 subject to $u_x(0,t) = u_x(1,t) = 0$, $t \ge 0$ and $u(x,0) = \cos^2 \pi x$, $u_t(x,0) = \sin^2 \pi x \cos \pi x$, $0 \le x \le 1$.
- 21. Solve the integral equation $y(x) = 1 + \lambda \int_0^1 x\xi y(\xi) d\xi$ by the iterative method.

 $(2 \times 5 = 10 \text{ Weightage})$
