23P305

(Pages: 2)

Name:

Reg.No:

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2024

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH3 E02 - CRYPTOGRAPHY

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Define Shift Cipher. Which shift key is known as "Caesar Ciher"?
- 2. Define Vigenere Cipher.
- 3. Explain the working of Linear Feedback Shift Register.
- 4. Show that One-Time Pad is vulnerable to a known-plaintext attack.
- 5. Prove that $H(\mathbf{X}) = 0$ if and only if $Pr[x_0] = 1$ for some $x_0 \in X$ and Pr[x] = 0 for all $x \neq x_0$.
- 6. Define unicity distance of a cryptosystem. Give a formula for estimating unicity distance.
- 7. Define a Hash family.
- 8. What is the Collision problem in the security of Hash functions?

 $(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any *two* questions each unit. Each question carries 2 weightage.

UNIT - I

- 9. Prove that the linear congruence $ax \equiv b \mod m$ has unique solution in *modulo* m if and only if gcd(a, m) = 1.
- 10. Suppose that K = (7,3) is a key in an Affine Cipher over Z_{26} . Decrypt the ciphertext "AXG" with this key.
- 11. Find the inverse of the matrix $\begin{bmatrix} 10 & 5 & 12 \\ 3 & 14 & 21 \\ 8 & 9 & 11 \end{bmatrix}$ in modulo 26.

UNIT - II

12. Consider a random throw of a pair of dice. Let \mathbf{X} be the random variable defined on the set $X = \{2, 3, ..., 12\}$ obtained by considering the sum of two dice and \mathbf{Y} is a random variable which takes on the D if the two dice are the same, and the value N, otherwise. Verify Bayes' Theorem for this pair of random variables.

- 13. Prove that $H(\mathbf{X}, \mathbf{Y}) = H(\mathbf{Y}) + H(\mathbf{X}|\mathbf{Y})$.
- 14. Suppose M is the Multiplicative Cipher and S is the Shift Cipher. Then verify that $M \times S$ is the Affine Cipher with equiprobable keys.

UNIT - III

15. Suppose that $l = m = N_r = 4$ in SPN. Let π_s is defined as follows: where the input and output are written in hexadecimal notation.

z	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
$\pi_s(z)$	E	4	D	1	2	F	В	8	3	А	6	C	5	9	0	7
Let π_p be defined as follows:																
z	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\pi_p(z)$	1	5	9	13	2	6	10	14	3	7	11	15	4	8	12	16
Let $K = 0011$	Let $K = 0011$ 1010 1001 0100 1101 0110 0011 1111															

For $1 \le r \le 5$, define K^r to consist of 16 consecutive bits of K, beginning with K_{4r-3} . Find W^2 for the plaintext 0010 0110 1011 0111 using this system.

- 16. Suppose that X₁, X₂ and X₃ are independent discrete random variables defined on the set {0, 1}. Let ε_i denote the bias of X_i, for i = 1, 2, 3. Prove that X₁ ⊕ X₂ and X₂ ⊕ X₃ are independent if and only if ε₁ = 0, ε₃ = 0 or ε₂ = ±¹/₂.
- 17. Explain the algorithm of Merkle-Damgard construction.

 $(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any two questions. Each question carries 5 weightage.

18. (a) "The Permutation Cipher is a special case of Hill Cipher". Justify this statement.

(b) Suppose m = 6 in Permutation Cipher and the key is the permutation $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 1 & 6 & 4 & 2 \end{pmatrix}$. Using this decrypt the ciphertext "EESLSHSALSESLSHBLEHSYEETHRAEOS".

19. (a) Suppose the plaintext "friday" is encrypted using a Hill Cipher with m = 2, to give the ciphertext "PQCFKU". Determine the key used for this encryption.

(b) Explain the cryptanalysis of the Vigenère Cipher.

20. (a) Explain Huffman's algorith.

(b) Let **X** be a random variable which takes on values on the set $X = \{a, b, c, d, e\}$, with the probability distribution Pr[a] = 0.32, Pr[b] = 0.23, Pr[c] = 0.20, Pr[d] = 0.15 and Pr[e] = 0.10. Using Huffman's algorithm to find the optimal prefix-free encoding of **X**. Compare the length of this encoding to $H(\mathbf{X})$.

21. Explain about DES and AES.

 $(2 \times 5 = 10 \text{ Weightage})$