23P307

(Pages: 2)

Name:

Reg.No:

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2024

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P PHY3 C10 - NUCLEAR AND PARTICLE PHYSICS

(Physics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Section A

Answer *all* questions. Each question carries 1 weightage.

- 1. What is tensor force and how it become related to nuclear force?
- 2. How did fermi theory of beta decay reach to a conclusion that neutrino is massless?
- 3. Outline the characteristics of multipole radiation.
- 4. Explain coulomb energy and asymmetry energy terms in semi-empirical mass formula.
- 5. Briefly explain the working of a photomultiplier tube with a neat diagram.
- 6. Briefly explain the working of a single channel analyzer.
- 7. Explain CPT theorem.
- 8. Discuss the spin $\frac{1}{2}$ baryon, and meson octets based on eightfold way model.

$(8 \times 1 = 8 \text{ Weightage})$

Section B

Answer any two questions. Each question carries 5 weightage.

- 9. Derive partial wave analysis of nucleon-nucleon scattering.
- 10. Explain magnetic moment and electric quadrupole moment according to shell model and Explain how shell model explains magic numbers using S-L interaction?
- 11. Explain GM counters and scintillation detectors in detail.
- 12. Discuss the classification of elementary particles based on spin and interaction. List the quantum number conservations in particle interactions.

 $(2 \times 5 = 10 \text{ Weightage})$

Section C

Answer any *four* questions. Each question carries 3 weightage.

- 13. Compute the total B.E and B.E/nucleon for a) 7 Li b) 20 Ne c) 56 Fe d) 235 U
- In a radioactive chain starting with ²⁴²₉₄ Pu and ending with ²⁰⁶₈₂ Pb, calculate the total number of alpha and beta particles emitted.

- 15. a) An element X decays, first by positron emission and then two alpha particles are emitted in successive radioactive decay. If the product nucleus has a mass number 229 and atomic number 89, find out the mass number and atomic number of element X.
 - b) A nucleus ${}^{m}_{n}X$ emits one alpha particle and two beta particles. Write down the resulting nucleus.
- 16. The first excited state of the rotational spectrum of the nucleus ²³⁸ ₉₂ U has an energy 45 keV above the ground state. Calculate the energy of the second excited state in keV.
- 17. Estimate the energy released when two deuteron nuclei fuse to form He nucleus. Given that binding energy per nucleon of ${}^{2}_{1}$ H =1.1 MeV and that of ${}^{4}_{2}$ He = 7 MeV.
- 18. a) Find the value of third component of isospin of Ξ^- in the following strong interaction: $\pi^+ + n \rightarrow \Xi^- + K^+ + K^$
 - b) Identify the type of the following interaction from consevation law: $\Sigma^0 \rightarrow \Lambda^0 + \gamma$ (life time<10⁻¹⁴)
- 19. Write the quark model of following particles. a) Σ^+ b) K^+ c) proton

 $(4 \times 3 = 12 \text{ Weightage})$
