22U522S

Name: Reg. No:

(Pages: 3) FIFTH SEMESTER B.Voc. DEGREE EXAMINATION, NOVEMBER 2024 (Supplementary) CC18U GEC5 OT15 - NUMERICAL ANALYSIS AND OPTIMIZATION TECHNIQUES (Information Technology – Common Course) (2018 to 2020 Admissions)

Time: Three Hours

PART A

Answer all questions. Each question carries 1 mark.

- 1. What do you mean by fixed point system? Give an example.
- 2. What is Percentage error?
- 3. Write Newton Raphson formula
- 4. What is algebraic equation? Give an example.
- 5. Using bisection method find first two iterations of $x^3 x 1 = 0$
- 6. Give an equation connecting E and Δ
- 7. Write Newton's forward interpolation formula
- 8. Define average operator μ
- 9. Define Surplus variable
- 10. What is an optimal solution?

PART B

Answer any *eight* questions. Each question carries 2 marks.

- 11. Explain rates of convergence in numerical methods with an example
- 12. Explain Round off error and Absolute error
- 13. Prove that $\Delta = E\mu$
- 14. Construct Newton's backward difference table

X : 10 20 30 40

- Y : 1.1 2 4.4 7.9
- 15. Using method of false position solve the equation $\cos x = 3x 1$
- 16. Using Trapezoidal Rule evaluate $\int_{1}^{2} x \, dx$ considering 4 subintervals
- 17. Find f(2) using Lagrange's interpolation formula
 - X : 0 1 3 4 Y : -12 0 12 24

(1)

Maximum: 80 Marks

 $(10 \times 1 = 10 \text{ Marks})$

Turn Over

- 18. What is interpolation formula?
- 19. Explain assignment problem
- 20. Using Picard's method Solve $\frac{dy}{dx} = x + y$ Y(0) = -1
- 21. Find the dual of the following L.P.P

Minimise $Z = 2x_1 + 9x_2 + x_3$

Subject to $x_1 + 4x_2 + 2x_3 > 5$

- $3x_1 + x_2 + 2x_3 > 4$
 - $x_1, x_2, x_3 \ge 0$

22. Obtain initial basic feasible solution for the trasportation proble.

		То				
		D	Е	F	G	
	А	11	13	17	14	250
From	В	16	18	14	10	300
	С	21	24	13	10	400
		200	225	275	250	

$$(8 \times 2 = 16 \text{ Marks})$$

PART C

Answer any *six* questions. Each question carries 4 marks.

23. Gauss Seidel method solve the equations

$$5x + 2y + z = 12$$

X + 4y + 2z = 15

$$x + 2y + 5z = 20$$

24. Using Sterling's formula find f(1.22)

1.2 X: 1 1.1 1.3 1.4 0.891 0.932 0.963 0.985

Y: 0.841

25. Using Simpson's rules estimate the integral $\int_{-1}^{1} 1 + x^2 dx$

26. Find Y (1.1) using Taylor's series method $\frac{dy}{dx} = x + Y$, y = 1 when x = 0

27. Find $f^{I}(1)$ and $f^{II}(1)$

X : 1 1.05 1.10 1.15 1.20 1.25 1.30 Y : 1 1.0247 1.0488 1.0723 1.0954 1.1180 1.1401

28. Explain assignment problem

29. Solve the following L.P.P
Maximise
$$Z = 3x_1 + 9x_2$$

Subject to $x_1 + 4x_2 \le 8$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$
30. Explain dual simplex method.

31. Write a short note on Travelling salesman problem.

PART D

Answer any *two* questions. Each question carries 15 marks.

32. Using Croute's triangularization method solve the equations.

$$x_1 - x_2 + x_3 = 1$$

-3x₁ + 2x₂ -3x₃ = -6
2x₁ - 5x₂ + 4x₃ = 5

33. Use fourth Runge-kutta method to find the value of y (0.2) and y (0.4) given that

$$\frac{dy}{dx} = x^2 + y^2$$
 y (0)= 1 And h = 0.1

34. Using Newton's divided difference formula find f(2)

X : 5 7 11 13 17
Y : 150 392 1452 2366 5202
35. Find the solution of
$$\frac{dy}{dx} = y (x+y), Y (0) =$$

Given Y (0.1) = 1.11689, Y (0.2) = 1.27739

22U522S

1 using Millen's predictor corrector formula. and Y (0.3) = 1.50412

 $(2 \times 15 = 30 \text{ Marks})$