22U668

(Pages: 3)

Name :....

Reg No. :....

SIXTH SEMESTER B.B.A. DEGREE EXAMINATION, APRIL 2025

(CBCSS-UG)

(Regular/Supplementary/Improvement)

CC19U BBA6 B13 - MANAGEMENT SCIENCE

(BBA - Core Course)

(2019 Admission onwards)

Time: 2.5 Hours

Maximum: 80 Marks

Credit: 4

Part A (Short answer questions) Answer *all* questions. Each question carries 2 marks.

- 1. Give the objectives of OR.
- 2. Give any point explaining the relation between OR and Modern Business management.
- 3. Define Linear programming.
- 4. State the meaning of objective function.
- 5. Explain unbounded solution under L.P.P.
- 6. Provide any 2 disadvantages of L.P.P.
- 7. Mention any 4 objectives of network analysis.
- 8. Classify the types of activities.
- 9. What do you mean by decision theory?
- 10. What is opportunity loss?
- 11. What do you mean by Game theory?
- 12. Illustrate transportation problem in the form of LPP.
- 13. Discuss basic feasible solution under transportation problem.
- 14. What is Lowest Cost Entry Method?
- 15. Write a note on Vogel's Approaximation Method.

(Ceiling: 25 Marks)

Part B (Paragraph questions)

Answer *all* questions. Each question carries 5 marks.

16. What is the nature of OR?

- 17. What are the types of models commonly used in OR?
- 18. Briefly explain the managerial applications of network techniques.
- 19. Construct the network diagram.
 - (i) A is the first operation
 - (ii) B and C can be performed in parallel and are immediate successor to A
 - (iii) D, E and F follow B
 - (iv) G follows E.
 - (v) H follows D, but it cannot start until E is complete
 - (vi) I and J succeed G
 - (vii) J precede K.
 - (viii) H and I precede L.
 - (ix) M succeeds Land K.
 - (x) The last operation N succeeds M and C.
- 20. Explain the advantages and disadvantages of network techniques.
- A management is faced with the problem of choosing one of the products for manufacturing. The probability matrix after market research for the two products was as follows.
 State of nature

	Profit (in	Profit (in Rs.) if market is				
Act	Good	Fair	Poor			
Product 'A'	0.75	0.15	0.10			
Product 'B'	0.60	0.30	0.10			

The profit that the management can make for different levels of market acceptability of the products are as follows.

Profit (in Rs.) if market is			ket is
Act	Good	Fair	Bad
Product 'A'	35000	15000	5000
Product 'B'	50000	20000	Loss of 3000

Calculate expected value of the choice of alternatives and advise the management.

22. Find the initial feasible solution to the transportation problem given below, by north west corner rule.

		Destinatio	n	
Origins	D_1	D_2	D ₃	Supply
O_1	2	7	4	5
O2	3	3	1	8
O ₃	5	4	7	7
04	1	6	2	14
Demand	7	9	18	

23. Determine the optimal transportation plan from the following table giving the plant to market shipping costs and quantities required at each market and available at each plant:

		Mar	ket		
Plant	W_1	W_2	W3	W_4	Availability
F1	11	20	7	8	50
F2	21	16	10	12	40
F3	8	12	18	9	70
Requirement	30	25	35	40	

(Ceiling: 35 Marks)

Part C (Essay questions)

Answer any *two* questions. Each question carries 10 marks.

24. The following table gives the activities in a construction project and other relevant information.

Activity	:	1-2	1-3	2-3	2-4	3-4	4-5
Duration :		20	25	10	12	6	10
(1) Draw t	he no	etwork	for the p	project.		(2) Find	d free, total and independent floats for each activity.

- (3) Which are the critical activities?
- 25. Discuss Program Evaluation and Review Technique.
- 26. Given the following pay off matrix:

		Decision				
State of	Probability	Do Not	Expand	Expand		
Nature		expand	200 units	400 units		
High demand	.4	2500	3500	5000		
Medium demand	.4	2500	3500	2500		
Low demand	.2	2500	1500	1000		

What should be the decision if we use?

|--|

(iii) The maximax criterion.

27. Given below is a payoff table.

		Act	
Events	A1	A2	A3
E1	5	-1	-17
E2	18	28	30
E3	25	50	80

What will be the optimal decision if the criterion followed is

(i) Maximax	(ii) Minimax	(iii) Maximin	(iv) Laplace	(v) EMV	(vi) EOL
Given probabili	ities for various e	vents are 34,.3 r	espectively.		

 $(2 \times 10 = 20 \text{ Marks})$
