22U602

(Pages: 2)

Name :

Reg. No :

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2025

(CBCSS-UG)

(Regular/Supplementary/Improvement)

CC19U MTS6 B10 / CC20U MTS6 B10 - REAL ANALYSIS

(Mathematics - Core Course)

(2019 Admission onwards)

Time: 2.5 Hours

Maximum: 80 Marks

Credit: 5

Part A (Short answer questions) Answer *all* questions. Each question carries 2 marks.

- 1. Discuss the contiuity of the signum function at x = 0.
- 2. State boundedness theorem for continuous functions.
- 3. Give an example to show that a continuous function does not necessarily have an absolute maximum even though it has an absolute minimum on a set.
- 4. Show that the equation $x = \cos x$ has a solution in the interval $[0, \pi/2]$.
- 5. State location of roots theorem.
- 6. State Weierstrass approximation theorem.
- 7. Define norm of the partition. Calculate the norm of the partition P=(1, 2.2, 4.1, 6.8, 8.7, 10) of [1, 10].
- 8. If $f \in \mathfrak{R}[a, b]$, then prove that the value of the integral is uniquely determined.
- 9. Define null set. Give an example.
- 10. Discuss the uniform convergence of the sequence of functions $(f_n(x))$, where $f_n(x) = x^n$.
- 11. Evaluate the improper integral $\int_{-\infty}^{0} \cosh x dx$.
- 12. Examine the absolute convergence of $\int_1^\infty \frac{\cos x}{x^2+1} dx$.
- 13. Examine the convergence of $\int_1^5 \frac{dx}{\sqrt{x^4-1}}$.
- 14. Prove that Beta function is symmetric.
- 15. Express $\int_0^1 \frac{x^2}{\sqrt{(1-x^5)}} dx$ in terms of Beta function.

(Ceiling: 25 Marks)

Part B (Paragraph questions)

Answer *all* questions. Each question carries 5 marks.

- 16. Every uniformy continuous function is Lipschitz function. True or false. Justify your answer.
- 17. Let f and g are in $\mathfrak{R}[a,b]$. Prove that $f+g\in\mathfrak{R}[a,b]$ and $\int_a^b(f+g)=\int_a^bf+\int_a^bg$.
- 18. State and prove squeeze theorem.
- 19. Prove that a sequence (f_n) of bounded functions on $A \subseteq \mathbb{R}$ converges uniformly on A to f if and only if $\|f_n f\|_A \to 0$ as $n \to \infty$.
- 20. Prove Cauchy criterion for uniform convergence of sequence of functions.
- 21. If a sequence of continuous functions (f_n) converges uniformly to a function f on $A \subseteq \mathbb{R}$, then prove that f is continuous on A.
- 22. State and prove Weierstrass M-test.
- 23. Prove that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

(Ceiling: 35 Marks)

Part C (Essay questions)

Answer any two questions. Each question carries 10 marks.

- 24. Prove that if $f:[a,b] \to \mathbb{R}$ is a monotone function then $f \in \mathfrak{R}[a,b]$.
- 25. State and prove first and second forms of fundamental theorem.
- 26. Show that even though the improper integral $\int_{-1}^{5} \frac{dx}{(x-1)^3}$ does not converge, its Cauchy principal value exists.
- 27. Establish the relation between Beta and Gamma function.

(2 × 10 = 20 Marks)
