23P402

(Pages: 2)

Name:

Reg.No:

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2025

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH4 C15 - ADVANCED FUNCTIONAL ANALYSIS

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

- 1. Define point spectrum, continuous spectrum and residual spectrum of a bounden operator A.
- 2. Prove that point spectrum σ_p of a self adjoint operator A satisfies $\sigma_p(A) \subseteq \mathbb{R}$.
- 3. State second Hilbert Schmidt Theorem.
- 4. Let A be a self adjoint operator. Show that $-I||A|| \le A \le I||A||$ for any self-adjoint operator A.
- 5. if $A \ge 0$ and $\langle Ax, x \rangle = 0$, then prove that Ax = 0
- 6. Let $E_i = \text{Im } P_i$; i.e $E_i = P_i H$. If $P_1 P_2 = 0$, then prove that $P_2 P_1 = 0$, $E_1 \perp E_2$ and $P_1 + P_2$ is an orthoprojection onto $E_1 \oplus E_2$.
- 7. Define second category set with example.
- 8. With example define closed graph operator.

$(8 \times 1 = 8$ Weightage)

Part B

Answer any two questions each unit. Each question carries 2 weightage.

UNIT - I

- 9. Show that for every $\varepsilon > 0$, there is only a finite number of linearly independent eigen vectors corresponding to eigen values λ_i with $|\lambda_i| \ge \varepsilon$.
- 10. State and Prove Fredholm's first theorem.
- 11. Prove that $\langle Ax, x \rangle \in \mathbb{R}$ for any $x \in H$ if and only if A is symmetric.

UNIT - II

- 12. Let $T: E \mapsto E$ be any linear operator, $E_1 + E_2 = E$ and let P be the projection onto E_1 parallel to E_2 . Then prove that PT = TP if and only if E_1 and E_2 are invariant subspaces of T
- 13. Let $Q_n(t)$ and $P_n(t)$ be sequences of polynomials. Assume that for all $t \in [m, M]$, $Q_n(t) \searrow \psi(t) \in K$ and $P_n(t) \searrow \varphi(t) \in K$.. Let $\psi(t) \le \varphi(t)$ for all $t \in [m, M]$. Then prove that $\lim_{n\to\infty} Q_n(A) =: B_1 \le B_2 := \lim_{n\to\infty} P_n(A)$.

14. Explain Hilbert Theorem.

UNIT - III

- 15. Define Minkowski functional. Prove that it is sublinear.
- 16. Define an Ideal. Prove that if \mathcal{A} does not have any proper ideal, then \mathcal{A} is a field.
- 17. Let \mathcal{A} is a Banach Algebra. Prove that an element x is invertible if and only if x does not belong to any poper ideal.

 $(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any *two* questions. Each question carries 5 weightage.

- 18. State and Prove first Hilbert-Schmidt theorem.
- 19. Let $A_0 \leq A_1 \leq d \leq A_n \leq d \leq A$. Then show that there exists a strong limit of $(A_n)_n$. (i.e., there exists a bounded operator B and $A_n x \to B x$ for all $x \in H$.
- 20. State and prove the Banach open mapping theorem.
- 21. State and prove Banach-Steinhaus theorem.

 $(2 \times 5 = 10 \text{ Weightage})$
