23P403

(Pages: 2)

Name:

Reg.No:

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2025

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH4 E05 - ADVANCED COMPLEX ANALYSIS

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

- 1. Show that the set of all analytic functions on a region G, H(G) is a complete metric space under the metric ρ .
- 2. Prove that $H(G) \cup \{\infty\}$ is closed in $C(G, \mathbb{C}_{\infty})$.
- 3. Show that Conformal equivalence is an equivalence is an equivalence.
- 4. Let $\{z_n\}$ be a sequence of nonzero complex numbers. Suppose $\prod_{k=1}^{\infty} z_k$ exists with $\prod_{k=1}^{\infty} z_k \neq 0$. Prove that $\lim_{n \to \infty} z_n = 1$.
- 5. Define the elementary factor function $E_p(z)$. Show that $E_p(z/a)$ has a simple zero at z = a and no other zero.
- 6. Show that $\log \Gamma(x)$ is a convex function for x > 0.
- 7. Prove that the constant term of the Laurent series of $(e^z 1)^{-1}$ about z = 0 is $-\frac{1}{2}$
- 8. When an entire function is said to be of finite order? Also define the order of an entire function f.

 $(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any two questions each unit. Each question carries 2 weightage.

UNIT - I

9. Suppose G is open in \mathbb{C} . Prove that there is a sequence $\{K_n\}$ of compact subsets of G such that $G = \bigcup_{n=1}^{\infty} K_n$ satisfying

 $K_n \subseteq \operatorname{int} K_{n+1}$

Every component of $\mathbb{C}_{\infty} - K_n$ contains a component of $\mathbb{C}_{\infty} - G$.

10. Show that $\mathcal{F} \in H(G)$ is normal if and only if \mathcal{F} is locally bounded.

^{11.} Let
$$(X_n, d_n)$$
 are metric spaces for each n . Prove that the space $\left(\prod_{n=1}^{\infty} X_n, d\right)$ where $d = \sum_{n=1}^{\infty} \left[\left(\frac{1}{2}\right)^n \left(\frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}\right) \right]$ is a metric space.

UNIT - II

- ^{12.} Show that $\cos \pi z = \prod_{n=1}^{\infty} \left(1 \frac{4z^2}{(2n-1)^2} \right)$. Using factorization of $\cos \pi z$, find a factorization for $\cosh \pi z$
- Let K be a compact subset of C and let E be a subset of C_∞ K that meets each component of C_∞ K.If f is analytic on an open set containing K and ε > 0. Prove that there is a rational function R(z) whose only poles lie in E and |f(z) R(z)| < ε for all z in K.
- 14. Show that $\Gamma(z)\Gamma(1-z) = \pi \csc \pi z$ for z not an integer. Deduce $\Gamma(1/2) = \sqrt{\pi}$

UNIT - III

- 15. State and prove Schwarz reflection principle.
- 16. Let (f, D) be a function element and let G be a region containing D such that (f, D) admits unrestricted continuation in G. Let a ∈ D, b ∈ G and γ₀ and γ₁ be paths in G from a to b. Also let {(f_t, D_t) : 0 ≤ t ≤ 1} and {(g_t, D_t) : 0 ≤ t ≤ 1} be analytic continuations of (f, D) along γ₀ and γ₁ respectively. If γ₀ and γ₁ are FEP homotopic, prove that [f₁]_b = [g₁]_b
- 17. Let f be an entire function, $M(r) = sup\{|f(re^{i\theta}|: 0 \le \theta \le 2\pi\}$ and n(r) is the number of zeros of f in B(0; r) counted according to multiplicity. Suppose f(0) = 1. Prove that $n(r) \log 2 \le \log M(2r)$.

 $(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any two questions. Each question carries 5 weightage.

- 18. Show that a set F ⊆ (C(G, Ω)) is normal iff the following two conditions are satisfied.
 for each z ∈ G, {f(z) : f ∈ F} has compact closure in Ω.
 F is equicontinuous at each point of G
- 19.

Prove that 1.
$$\left(1 - \frac{t}{n}\right)^n \le e^{-t}$$
 for $t \ge 0$ and $n \ge t$.

2.
$$\Gamma(z)=\int_0^\infty e^{-t}t^{z-1}dt$$
 for $Re(z)>0.$

20. (a) If Re(z) > 1, then prove that $\zeta(z)\Gamma(z) = \sum_{n=1}^{\infty} \left(\int_0^{\infty} e^{-nt} t^{z-1} dt \right)$ (b) Show that $\zeta(z)\Gamma(z) = \int_0^{\infty} (e^t - 1)^{-1} t^{z-1} dt$ for Re(z) > 1.

21. Let f be an entire function of finite order λ and $\varepsilon > 0$. Prove that $|f(z)| < exp(|z|^{\lambda+\varepsilon})$ for all z with |z| sufficiently large and an z can be found with |z| as large as desired so that $|f(z)| \ge exp(|z|^{\lambda-\varepsilon})$

 $(2 \times 5 = 10 \text{ Weightage})$
