23P404

(Pages: 2)

Name:

Reg.No:

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2025

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH4 E09 - DIFFERENTIAL GEOMETRY

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Show that the graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$.
- 2. Let S be an n-1 surface in \mathbb{R}^n given by $S = f^{-1}(c)$ where $f: U \to R, (U \text{ open in } \mathbb{R}^n)$ is such that $\nabla f(p) \neq 0$ for all $p \in f^{-1}(c)$. Let $g: U_1 \to R$, defined by $g(x_1, x_2, \dots, x_{n+1}) = f(x_1, x_2, \dots, x_n)$ where $U_1 = U \times R$. Then prove that $g^{-1}(c)$ is an *n*-surface in \mathbb{R}^{n+1} .
- 3. Write the statement of Lagrange multiplier theorem.
- 4. Show that if $\alpha: I \to \mathbb{R}^{n+1}$ is a parametrized curve with constant speed, then $\alpha(t) \perp \alpha(t)$ for every $t \in I$.
- 5. Let S be an n- surface in \mathbb{R}^{n+1} and $\alpha: I \to S$ be a parametrised curve on S. Then for smooth vector fields **X** and **Y**, prove that $(\mathbf{X}+\mathbf{Y})' = \mathbf{X}' + \mathbf{Y}'$
- 6. Compute $\nabla_v f$, where $f: R^{n+1} \to R$, $v \in R_p^{n+1}$, where $f(x_1, x_2) = 2x_1^2 + 3x_2^2$, v = (1, 0, 2, 1), n = 1.
- 7. If β is any reparametrisation of α , then $\int_{\alpha} \omega = \int_{\beta} \omega$.
- 8. Define a surface of dimension n in \mathbb{R}^{n+k} , $(k \ge 1)$.

$(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any two questions each unit. Each question carries 2 weightage.

UNIT - I

- 9. Let U be an open set in \mathbb{R}^{n+1} and let $f: U \to \mathbb{R}$ be smooth. Let $p \in U$ be a regular point of f, and let c = f(p). Then the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$.
- 10. Let $S \subset \mathbb{R}^{n+1}$ be a connected *n* surface in \mathbb{R}^{n+1} . Then prove that there exists exactly two orientations on S.
- 11. Find the integral curve of the vector field $\mathbf{X}(p) = (p, X(p))$ where $X(x_1, x_2) = (-x_2, x_1)$ passing through (i)(1, 0) and (ii)(a, b).

- 12. Let **X** and **Y** be any two smooth vector fields on U and $f: U \to R$ be a smooth function and let $p \in U$, $v \in R_p^{n+1}$, then prove that (i) $\nabla_v(\mathbf{X} + \mathbf{Y}) = \nabla_v(\mathbf{X}) + \nabla_v(\mathbf{Y})$ and (ii) $\nabla_v(f \mathbf{X}) = \nabla_v(f)\mathbf{X}(p) + f(p)\nabla_v(\mathbf{X})$.
- 13. Find the global parametrization of the curve $(x_1 a)^2 + (x_2 b)^2 = r^2$.
- 14. Find the length of the connected oriented plane curve $f^{-1}(c)$ oriented by $\frac{\nabla f}{\|\nabla f\|}$ where $f: U \to R$ is given by $f(x_1, x_2) = 5x_1 + 12x_2$, $U = \{(x_1, x_2) : x_1^2 + x_2^2 < 169\}, c = 0$.

UNIT - III

- 15. Let V be a finite dimensional vector space with dot product and let $L: V \to V$ be a self adjoint linear transformation on V. Then prove that there exists an orthonormal basis for V consisting of eigen vectors of L.
- 16. On each compact oriented n- surface S in \mathbb{R}^{n+1} , prove that there exists a point p such that the second fundamental form at p is definite.
- 17. If $L: \mathbb{R}^n \to \mathbb{R}^{n+1} (k \ge 1)$ is a non singular linear map and let $w \in \mathbb{R}^{n+k}$, then show that the map $\psi: \mathbb{R}^n \to \mathbb{R}^{n+k}$ defined by $\psi(p) = L(p) + w$ is a parametrised *n*-surface (*n*-plane) through *w* in \mathbb{R}^{n+k} .

 $(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any *two* questions. Each question carries 5 weightage.

- 18. Let X be a smooth vector field on an open set U ⊂ ℝⁿ⁺¹, and let p ∈ U. Then, prove that there exists an open interval I containing 0 and an integral curve α : I → U of X such that: (i) α(0) = p, (ii) If β : Ĩ → U is any other integral curve of X with β(0) = p, then Ĩ ⊂ I, and β(t) = α(t) for all t ∈ Ĩ.
- 19. Let S be an n- surface in ℝⁿ⁺¹, let X be a smooth tangent vector field on S, and let p ∈ S. Then prove that there exists an open interval I containing 0 and a parametrized curve α : I → S such that:
 (i) α(0) = p, (ii) α(t) = X(α(t)), for every t ∈ I (iii) If β : Ĩ → S is any other parametrized curve in S satisfying (i) and (ii), then prove that Ĩ ⊂ I, and β(t) = α(t) for all t ∈ Ĩ.
- 20. Let S be an S surface in \mathbb{R}^{n+1} , let $p \in S$ and $v \in S_p$. Then prove the existence and uniqueness of the maximal geodesic in S passing through p with initial velocity v.
- 21. State and prove inverse function theorem for n- surfaces. Hence deduce that if S is a compact connected oriented n- surface in \mathbb{R}^{n+1} whose Gauss Kronecker curvature is nowhere zero, then the Gauss map $N: S \to S^n$ is a diffeomorphism.

 $(2 \times 5 = 10 \text{ Weightage})$
