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Part-A

Answer any four questions. Each question carries 2 weightage.

1.   Prove that the function    has neither a maximum nor a minimum at the
origin.

2.   (a) Establish Taylor's theorem for a multivariable function.
(b) Explain derivatives of a multivariable function.

3.   Find the minimum value of  .

4.   If    is an analytic function in a domain  , prove that the curves 
 form two orthogonal families.

5.   State and prove Cauchy's theorem for analytic function.

6.   What is a singular point? Explain different types of isolated singularities.

7.   Find the residue of    at .

   (4 × 2 = 8 Weightage)

Part-B

Answer any four questions. Each question carries 3 weightage.

8.   Derive the polar form of Cauchy-Reimann equation.

9.   What do you mean by Morera's theorem? Explain.

10.   Evaluate  .

11.   Find the Laplace transform of 
a) 
b) 
c) 

f(x, y) = 2 − 3 y +x4 x2 y2

f(x, y) = + 5 − 6x + 10y + 6x2 y2

f(z) = u + iv D

u = constant, v = constant
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12.   Find the inverse Laplace transform of 
a) 

b) 

13.   Find the Fourier series expansion of  , where   .

14.   Find finite Fourier  and   transform of 

(4 × 3 = 12 Weightage)

Part-C

Answer any two questions. Each question carries 5 weightage.

15.   Establish Poisson's integral formula.

16.   State and prove Taylor's theorem.

17.   State and prove the Cauchy-Residue theorem and evaluate  .

18.   Solve the differential equation by the method of laplace transform 
.

(2 × 5 = 10 Weightage)
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t + (1 − 2t) − 2y = 0, y(0) = 1, (0) = 2y′′ y′ y′


