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Part-A

Answer any four questions. Each question carries 2 weightage.

1.   Show that every monotone sequence of sets  is convergent.

2.   What is meant by independence of two random variables? Let    be a probability space and A,
B be two subsets of  . Define two random variables such that   

 Show that X and Y are independent 

3.   Define distribution function of a ransom variable. Examine  whether the following is  distribution function of a
random variable or not  .

4.   Define expectation of a measurable function of X. If X is a random variable taking values 1,2,3,...

, i=1,2,3,... show that    .  

5.   Define convergence in rth mean. Show that   the sequence    if    converges in rth mean, 
imples that     converges in probability. 

6.   Define complete convergence of a   seqence of distribution function . If   

 examine whether it is completely convergent or not. 

7.   Examine whether WLLN holds in the following sequence of independent random variables 

   (4 × 2 = 8 Weightage)

Part-B

Answer any four questions. Each question carries 3 weightage.

8.   (a) Define conditional probability measure. 
(b) Define induced probability space.
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9.   Prove that   where 

10.   a) Let   be an integer valued random variable. Then show that its probability mass function is given
by  
b) If the characteristic function of a random variable X is     derive its probability mass
function  

11.   State and prove Kolmogorov 0-1 law.

12.   State and prove a necessary and sufficient condition  for the convergence of a sequence random variables
in probability to zero 

13.   Show that If    is uniformly continuous and bounded on R and     implies    
  as 

14.    State and prove Kolmogorov inequality.

(4 × 3 = 12 Weightage)

Part-C

Answer any two questions. Each question carries 5 weightage.

15.   Derive the characteristic function of a random variable  X having probability density function as follows

(i)    

(ii)  

16.   If      the rth absolute moment of    is finite, show that the characteristic function is differentiable
r times.  Converely if    exists and is finite, then show that        for    when r is odd
and    when r is even 

17.   State and prove Jordan decomposition theorem of distribution functions

18.   State and prove Liapounov's  form of central limit theorem.

(2 × 5 = 10 Weightage)
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