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Part A
Answer all questions. Each question carries 1 weightage.

Verify whether ¢ (x, y) = (—y, x) is an isometry of the plane.
Describe the torsion subgroup of Z, X Z X Z,, .
Describe the center of every simple abelian group and the center of every non abelian
group.
State Burnside’s formula.
Write isomorphic refinements of the series {0} < 10Z < Zand {0} < 25Z < Z .
Find the inverse of the word 1 + i 4+ 2j + 2k in the ring of quaternions.
Define an ideal. Give an example of an ideal.
Prove that x3 + 3x + 2 is irreducible over Zs .
(8 x 1 =8 Weightage)

Part B
Answer any six questions from each unit. Each question carries 2 weightage.

Unit 1
Find all abelian groups up to isomorphism of order 720.
Prove that A, does not contain a subgroup of order 6.

Let X be a G-set and let x € X. If |Glis finite, then prove that |Gxlis a divisor of |G]|.

Unit 2
State and prove the third isomorphism theorem.
If p is a prime, then prove that every group of order p? is abelian.

Prove that every group G is the homomorphic image of a free group G.

Unit 3

Prove that the polynomial x? — 2 has no zeros in the rational numbers.
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State and prove the Eisenstein criterion.
Draw the addition and multiplication tables for the group algebra Z,G, where G = {e.a}
is a cyclic group of order 2?

(6 x 2 =12 Weightage)

Part C
Answer any two questions. Each question carries 5 weightage.

a) Prove that Z,,, X Z,, is isomorphic to Z,,,, if and only if m and n are relatively prime.

b) Prove that if m divides the order of a finite abelian group G, then G has a subgroup
of order m.

a) Let H be a normal subgroup of a group G. Prove that the cosets of H forms a group
G /H under the binary operation (aH)(bH) = (ab)H.

b) Prove that the factor group of a cyclic group is cyclic.

c) Show that if a finite group G contains a nontrivial subgroup of index 2 in G, then G
is not simple.

a) If P; and P, are Sylow p-subgroups of a finite group G, then prove that P; and P,
are conjugate subgroups of G.

b) Let p and g be distinct primes with p < q. Prove that every group G of order pq is
not simple.

Determine all groups of order 10 up to isomorphism.

(2 x 5 =10 Weightage)
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