

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2025

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19PMTH1C02 - LINEAR ALGEBRA

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part AAnswer any ***all*** questions. Each question carries 1 weightage.

1. Let S be a linearly independent subset of a vector space V . Suppose β is a vector in V which is not in the subspace spanned by S . Then check whether the set obtained by adjoining β to S is linearly independent or not.
2. Let V be a vector space. Define an ordered basis for V . Give an example of an ordered basis for \mathbb{R}^2 .
3. Let T be a linear transformation from V into V show that T is invertible implies T is non-singular.
4. Let $\mathcal{B} = \{\alpha_1, \alpha_2\}$ be the basis for \mathbb{R}^2 defined by $\alpha_1 = (2, 3)$ and $\alpha_2 = (6, 1)$. Find the dual basis of \mathcal{B} .
5. Define transpose of a linear transformation with example.
6. Let A and B be two matrices such that $B = P^{-1}AP$ then show that characteristic polynomial of A and B are same.
7. If V is an inner product space, then for any vectors α, β in V and any scalar c show that $\|c\alpha\| = |c|\|\alpha\|$
8. Prove that an orthogonal set of non-zero vectors is linearly independent.

(8 × 1 = 8 Weightage)**Part B**Answer any ***two*** questions from each unit. Each question carries 2 weightage.**UNIT - I**

9. Prove that the n tuple space F^n is a vector space.
10. Prove that the subspace spanned by a non-empty subset S of a vector space V is the set of all linear combinations of vectors in S .
11. Let V and W be vector spaces over the field F and let T be a linear transformation from V to W . Suppose that V is finite dimensional Then show that $\text{rank}(T) + \text{nullity}(T) = \dim V$

UNIT - II

12. Let T be the linear transformation from \mathbb{R}^3 into \mathbb{R}^2 defined by $T(x_1, x_2, x_3) = (x_1 + x_2, 2x_2 - x_3)$.
IF $\mathcal{B} = \{\alpha_1, \alpha_2, \alpha_3\}$ and $\mathcal{B}' = \{\beta_1, \beta_2\}$, where
 $\alpha_1 = (1, 0, -1), \alpha_2 = (1, 1, 1), \alpha_3 = (1, 0, 0), \beta_1 = (0, 1), \beta_2 = (1, 0)$. Find the matrix of T relative to the pair $\mathcal{B}, \mathcal{B}'$.

13. If S is any subset of a finite dimensional vector space V , then prove that $(S^0)^0$ is the subspace spanned by S .

14. Let V be a finite dimensional vector space over F and let T be a linear operator on V . Show that T is diagonalizable implies the minimal polynomial for T has the form $p = (x - c_1)(x - c_2) \cdots (x - c_k)$ where c_1, c_2, \dots, c_k are distinct elements of F .

UNIT - III

15. Define projection on a vector space V . Prove that

- Any projection E is diagonalizable.
- If E is projection on R along N , then $(I - E)$ is the projection on N along R .

16. State and Prove Polarization identities of an inner product.

17. Let V be an inner product space and S be any set of vectors in V . Define orthogonal complement of a set S . Prove that it is a subspace of V .

(6 × 2 = 12 Weightage)

Part C

Answer any **two** questions. Each question carries 5 weightage.

18. If W_1 and W_2 are finite dimensional subspaces of a vector space V then prove that $W_1 + W_2$ is finite dimensional. Also verify $\dim W_1 + \dim W_2 = \dim(W_1 \cap W_2) + \dim(W_1 + W_2)$.

19. Show that the dimension of $L(V, V)$ is n^2 where V is a finite dimensional vector space of dimension n .

20. Let T be a linear operator on a finite dimensional vector space V . If f is the characteristic polynomial for T , then show that $f(T) = 0$.

21. (a) Show that the mapping $\beta \rightarrow \beta - E\beta$ is the orthogonal projection of V on W^\perp . where V is an inner product space, W a finite dimensional subspace, and E the orthogonal projection of V on W .
(b) State and Prove Bessel's Inequality.

(2 × 5 = 10 Weightage)
