

**FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2025**

(CBCSS - PG)

(Regular/Supplementary/Improvement)

**CC19PMTH1C03 - REAL ANALYSIS - I**

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

**Part A**Answer ***all*** questions. Each question carries 1 weightage.

1. Prove that countable union of countable sets is countable.
2. Is union of an infinite collection of closed sets closed. Justify your answer.
3. If  $X$  and  $Y$  be metric spaces and  $E \subset X$ ,  $f$  maps  $E$  into  $Y$  and  $p$  is a limit point of  $E$ . If  $f$  has a limit at  $p$ , prove that this limit is unique.
4. Let  $E$  be noncompact set in  $\mathbb{R}$ . Prove that there exists a continuous and bounded function on  $E$ , which has no maximum.
5. Verify whether mean value holds for the function  $f(x) = e^{ix}$ ,  $x \in [0, 2\pi]$ .
6. Let  $\{f_n(x)\}$  be a sequence of functions defined on  $E$  such that  $|f_n(x)| \leq M_n$ ,  $x \in E$ ,  $n = 1, 2, 3, \dots$   
Then prove that  $\sum f_n$  converges uniformly on  $E$ , if  $\sum M_n$  converges.
7. Prove that a sequence  $\{f_n\}$  converges to  $f$  with respect to the metric of  $\mathcal{C}(X)$ , the set of all complex-valued, continuous, bounded functions with domain  $X$ , if and only if  $\{f_n\}$  converges to  $f$  uniformly on  $X$ .
8. Prove that every member of an equicontinuous family of functions is uniformly continuous.

**(8 × 1 = 8 Weightage)****Part B**Answer any ***two*** questions from each unit. Each question carries 2 weightage.**UNIT - I**

9. Let  $Y \subset X$ . Prove that a subset  $E$  of  $Y$  is open relative to  $Y$  if and only if  $E = Y \cap G$  for some open subset  $G$  of  $X$ .
10. Prove that every  $K$  cell is compact.
11. Prove that monotonic functions have no discontinuities of the second kind.

## UNIT - II

12. State and prove mean value theorem.
13. Show that if  $f$  is monotonic on  $[a, b]$  and  $\alpha$  is continuous on  $[a, b]$ , then  $f \in \mathcal{R}(\alpha)$  on  $[a, b]$ .
14. State and prove fundamental theorem of calculus

## UNIT - III

15. Show that a continuously differentiable curve  $\gamma$  defined on an interval  $[a, b]$  is rectifiable and  $\Lambda(\gamma) = \int_a^b |\gamma'(t)| dt$
16. Prove that the series  $\sum_{n=1}^{\infty} (-1)^n \frac{x^2+n}{n^2}$  converges uniformly in every bounded interval.
17. If  $\{f_n\}$  is a sequence of continuous functions on a set  $E$ , and if  $f_n \rightarrow f$  uniformly on  $E$ , then prove that  $f$  is continuous on  $E$ .

**(6 × 2 = 12 Weightage)**

## Part C

Answer any **two** questions. Each question carries 5 weightage.

18. Let  $f$  be a mapping from a metric space  $X$  into a metric space  $Y$ . Show that
  - (a)  $f$  is continuous on  $X$  if and only if  $f^{-1}(C)$  is closed in  $X$  for every closed set  $C$  in  $Y$ .
  - (b) If  $f$  is continuous on  $X$ , then  $f^{-1}$  is continuous on  $Y$ .
19. (a) State and Prove L'Hospital's rule.  
(b) If  $f$  is differentiable on  $[a, b]$ , then prove that  $f'$  cannot have any simple discontinuities on  $[a, b]$ .
20. (a) State and prove Taylor's theorem.  
(b) Prove that the function  $f \in \mathcal{R}(\alpha)$  on  $[a, b]$  if and only if for every  $\epsilon > 0$ , there exists a partition  $P$  of  $[a, b]$  such that  $U(P, f, \alpha) - L(P, f, \alpha) < \epsilon$ .
21. (a) If  $f_1, f_2 \in \mathcal{R}(\alpha)$  on  $[a, b]$ , then prove that  $(f_1 + f_2) \in \mathcal{R}(\alpha)$  on  $[a, b]$  and
$$\int_a^b (f_1 + f_2) d\alpha = \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha.$$
  
(b) If  $f \in \mathcal{R}(\alpha)$  on  $[a, b]$  and  $c$  is any constant, then prove that  $cf \in \mathcal{R}(\alpha)$  on  $[a, b]$  and
$$\int_a^b cf d\alpha = c \int_a^b f d\alpha.$$

**(2 × 5 = 10 Weightage)**

\*\*\*\*\*