

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2025

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19PMTH1C04 - DISCRETE MATHEMATICS

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part AAnswer any ***all*** questions. Each question carries 1 weightage.

1. Show that intersection of two chains is again a chain.
2. Define complimented lattice. Also justfy the statement that, compliment need not be unique with an example.
3. If u and v are nonadjacent vertices of a tree T , then $T + (uv)$ contains a unique cycle.
4. Define the planarity and plane representation of graph G with an example.
5. If the grith k of a connected plae graph G is at least 3, then $m \leq \frac{k(n-2)}{(k-2)}$.
6. Define concadination of two strings with an example.
7. Define a grammer G .
8. Find the grammer $L = \{a^n b^{n+1} : n \geq 0\}$.

(8 × 1 = 8 Weightage)**Part B**Answer any ***two*** questions from each unit. Each question carries 2 weightage.**UNIT - I**

9. Let Y be the set of subsets of N , which are either finite or cofinite. Prove that Y is a subalgebra of the powerset boolean algebra $P(N)$.
10. Check whether the boolean function is symmetric; $x_1 x_2 x_3 x_4' + x_2 x_3 x_4 x_1' + x_3 x_4 x_2 x_1' + x_4 x_1 x_2 x_3'$.
11. Write the DNF of $g(a, b, c) = (a + b + c)(a' + b + c')(a + b' + c')(a' + b' + c')(a + b + c')$.

UNIT - II

12. In any group of n persons ($n \geq 2$), there are at least two with the same number of friends. Discuss.

13. A vertex v of a connected graph G with at least three vertices is a cut vertex of G if and only if there exist vertices u and w of G , distinct from v , such that v is in every $u-w$ path in G .
14. Prove that K_5 is nonplanar.

UNIT - III

15. Consider the DFA $M = (\{s_0, s_1, s_2\}, \{a, b\}, \delta, s_0, \{s_0, s_1\})$ and $\delta(s_0, a) = s_0, \delta(s_0, b) = s_1, \delta(s_1, a) = s_0, \delta(s_1, b) = s_2, \delta(s_2, a) = s_2, \delta(s_2, b) = s_2$. Find $\delta^*(s_1, abb)$.
16. Consider the NFA with final state is q_1 and draw the transition graph with $\delta(q_0, a) = q_1, \delta(q_1, \lambda) = q_2, \delta(q_2, \lambda) = q_0$. Find $\delta(q_1, a), \delta^*(q_1, a), \delta^*(q_2, \lambda), \delta(q_2, aa)$.
17. Construct a DFA equivalent to the given NFA, $\delta(q_0, a) = q_1, \delta(q_1, a) = q_1, \delta(q_1, \lambda) = q_2, \delta(q_2, b) = q_0$. where q_1 is the final state.

(6 × 2 = 12 Weightage)

Part C

Answer any **two** questions. Each question carries 5 weightage.

18. Let $X = N \times N$ on X , $(x_1, y_1) \leq (x_2, y_2)$ if and only if $x_1 \leq x_2$ and $y_1 \leq y_2$. Prove that it is a poset, lattice but it is not a chain. Also draw the lattice diagram.
19. Let X be a boolean algebra, then
 - (a) Find out all the boolean functions in two variables.
 - (b) Find out all the atoms of this boolean algebra.
 - (c) List all the symmetric boolean functions from the above collection.
 - (d) Find out the characteristic numbers of all symmetric boolean functions listed above.
20. For any loopless connected graph G
 - (a) $\kappa(G) \leq \lambda(G) \leq \delta(G)$
 - (b) Discuss the case of strict inequality for the above inequality with an example.
21. State and prove Whitney's theorem on 2- connected graphs.

(2 × 5 = 10 Weightage)
