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Part A

Answer all questions. Each question carries 1 weightage.

1.   Prove that 

2.   If the arithmetical functions  and    are completely multiplicative, then check whether     and ,
where  are completely multiplicative.

3.   Prove that , where  is the Euler's constant.

4.   Prove that for  .

5.   Prove that  .

6.   Determine whether 888 is a quadratic residue or non-residue mod 1999.  

7.   Find the inverse of the matrix  .

8.   How to send a digital signature in RSA cryptosystem?

   (8 × 1 = 8 Weightage)

Part B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT - I

9.  

10.   Prove that  .
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Prove that ∀n ≥ 1, ϕ(d) = n.∑
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11.   If   and  are positive real numbers such that , then show that 
.

UNIT - II

12.   Show that for 

13.   Let        be a non-negative sequence such that . Then

prove that there exist a constant  and an such that 

14.   Show that there is a constant   such that 

UNIT - III

15.   For every odd prime , prove that  .

16.   Define shift cryptosystem and affine cryptosystem. Also find the plain text corresponding to the
ciphertext ZXNGA in the affine cryptosystem with the enciphering key (7, 3) in the 26- letter alphabet
system.

17.    Solve the  system: 

(6 × 2 = 12 Weightage)

Part C

Answer any two questions. Each question carries 5 weightage.

18.   Prove that the set  of all arithmetical functions  with  is an abelian group with respect to
Dirichlet multiplication.

19.   Show that                      

                       .

20.   Prove that the following relations are logically equivalent:   

                                          

21.   State and prove Euler's criterion for Legendre's symbol. Also check whether 6  is a quadratic residue
modulo 23.

(2 × 5 = 10 Weightage)
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x + 3y ≡ 1(mod 26)

7x + 9y ≡ 1(mod 26)
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