

24P356

(Pages: 2)

Name.....

Reg. No.....

THIRD SEMESTER M.A. DEGREE EXAMINATION, NOVEMBER 2025

(CUCSS-PG)

(Regular/Supplementary/Improvement)

CC22PMST3C10 – STOCHASTIC PROCESSES

(Statistics)

(2022 Admission onwards)

Time : Three Hours

Maximum : 30 Weightage

PART A

Answer any ***four*** questions. Each question carries 2 weightage.

1. What is transition probability of a Markov process?
2. Define Random Walk. How it is related to Birth and Death process?
3. Define Markov process. Give an example.
4. What are the properties of a Poisson process?
5. Define renewal equation. Explain the uses.
6. How can we compute n step transition probabilities?
7. Discuss the distributional properties of Brownian motion process.

(4 × 2 = 8 Weightage)

PART B

Answer any ***four*** questions. Each question carries 3 weightage.

8. Derive the Chapman-Kolmogorov equation for a Markov process.
9. Let $\{N(t), t > 0\}$ be a Poisson process with rate A. Calculate $E[N(t) \cdot N(t + s)]$
10. For a renewal process $\{N(t), t \geq 0\}$, prove the renewal function $m(t) = \sum_{n=1}^{\infty} F_n(t)$, $F_n(t) = P(N(t) \geq n)$.
11. Explain:
 - (a) Branching process.
 - (b) Brownian Motion process.
 - (c) Compound Poisson process.
12. Obtain the steady state probability distribution of a M/M/1 model.
13. Find the distribution of interarrival time distribution of a Poisson distribution.
14. State and prove elementary renewal theorem.

(4 × 3 = 12 Weightage)

PART C

Answer any ***two*** questions. Each question carries 5 weightage.

15. Derive the distribution of first hitting time of a Brownian motion process.

16. With probability 1, prove that $\frac{N(t)}{t} \rightarrow 1/\mu$ as $t \rightarrow \infty$, for a renewal process

17. (a) Discuss the state properties of a Markov chain

(b) Examine the properties of the transition probability matrix $\begin{bmatrix} .5 & .5 & 0 \\ 0 & .5 & .5 \\ 0 & 0 & 1 \end{bmatrix}$.

18. State and prove central limit theorem on renewal process. Stochastic process having independent increment is a Markov process. Is the converse true?

(2 × 5 = 10 Weightage)
