

24P304

(Pages: 2)

Name.....

Reg. No.....

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2025

(CBCSS-PG)

(Regular/Supplementary/Improvement)

CC19P MTH3 C14 – PDE AND INTEGRAL EQUATIONS

(Mathematics)

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

PART AAnswer **all** questions. Each question carries 1 weightage.

1. Explain the method of characteristics to solve a first order linear partial differential equation.
2. Let $u(x, t)$ be a solution of the wave equation $u_{tt} - c^2 u_{xx} = 0$, which is defined in the whole plane. If u is constant on the line $x = 2 + ct$, then prove that $u_t + c u_x = 0$.
3. State the heat conduction problem for a rod of finite length and find its generalized solution.
4. Show that the Dirichlet problem in a bounded domain D has atmost one solution in $C^2(D) \cap C(\bar{D})$.
5. If $u(x, y)$ is a harmonic function in a domain D , then show that $u \in C^\infty(D)$.
6. If $y''(x) = F(x)$ and y satisfies the end conditions $y(0) = 0$ and $y(1) = 0$, then show that $y(x) = \int_0^x (x - \xi) F(\xi) d\xi - x \int_0^1 (1 - \xi) F(\xi) d\xi$.
7. Show that the characteristic numbers of a homogeneous Fredholm integral equation with a real symmetric kernel are all real.
8. Obtain the resolvent kernel associated with the kernel $K(x, \xi) = 1 - 3x\xi$ in $(0,1)$.

(8 × 1 = 8 Weightage)**PART B**Answer any **two** questions from each unit. Each question carries 2 weightage.**UNIT - I**

9. Solve $-yu_x + xu_y = 0$, $u(x, 0) = \sin x$ for $x > 0$ by Lagrange method.
10. Reduce to canonical form, the PDE $x^2 u_{xx} - 2xyu_{xy} + y^2 u_{yy} + xu_x + yu_y = 0$.
11. Solve the problem

$$u_{tt} - u_{xx} = t^7 \quad -\infty < x < \infty, t > 0,$$

$$u(x, 0) = 2x + \sin x \quad -\infty < x < \infty$$

$$u_t(x, 0) = 0 \quad -\infty < x < \infty.$$

UNIT - II

12. Show that the solution to the following problem is unique:

$$\begin{aligned} u_{tt} - c^2 u_{xx} &= F(x, t) & 0 < x < L, t > 0, \\ u_x(0, t) &= a(t), \quad u_x(L, t) = b(t) & t \geq 0, \\ u(x, 0) &= f(x), \quad u_t(x, 0) = g(x) & 0 \leq x \leq L. \end{aligned}$$

13. State and prove the strong maximum principle.

14. Solve the Laplace equation in the square $0 < x, y < \pi$ subject to the Dirichlet condition $u(x, 0) = 1984, u(x, \pi) = u(0, y) = u(\pi, y) = 0$.

UNIT - III

15. Using Green's function, transform the differential equation

$$\frac{d^2y}{dx^2} + y = x, \quad y(0) = y(1) = 0 \text{ to an integral equation.}$$

16. Find the general solution of the equation $y(x) = \lambda \int_0^{2\pi} \sin(x + \xi) y(\xi) d\xi + x$.

17. Describe the iterative procedure to solve a Fredholm integral equation of second kind.

(6 × 2 = 12 Weightage)

PART C

Answer any **two** questions. Each question carries 5 weightage.

18. By the characteristics method, solve $-yu_x + xu_y = u$ subject to the initial condition $u(x, 0) = \psi(x)$.

19. Fix $T > 0$. Show that for $0 \leq t \leq T$, the Cauchy problem

$$\begin{aligned} u_{tt} - c^2 u_{xx} &= F(x, t) & -\infty < x < \infty, t > 0, \\ u(x, 0) &= f(x), \quad u_t(x, 0) = g(x) & -\infty < x < \infty \end{aligned}$$

is well posed if $F, F_x \in C(\mathbb{R}^2), f \in C^2(\mathbb{R}), g \in C^1(\mathbb{R})$.

20. Show that the solution for the Dirichlet problem for a circle of radius a is given by the Poisson integral formula.

21. Make use of an appropriate formula to show that the iterative procedure will converge if $|\lambda| < 3$ for the integral equation $y(x) = 1 + \lambda \int_0^1 x\xi y(\xi) d\xi$ and solve it.

(2 × 5 = 10 Weightage)
