

25U107

(Pages: 2)

Name :

Reg. No :

FIRST SEMESTER SEMESTER UG DEGREE EXAMINATION, NOVEMBER 2025

(FYUGP)

(Regular/Supplementary/Improvement)

CC24UMAT1CJ101 - DIFFERENTIAL CALCULUS

(B.Sc. Mathematics - Major Course)

(2024 Admission onwards)

Time: 2.0 Hours

Maximum: 70 Marks

Credit: 4

Part A (Short answer questions)Answer **all** questions. Each question carries 3 marks.

1. Does the function $f(x) = \sqrt{4 - x^2}$ defined in the interval $[-2,2]$ has a left hand limit at $x = -2$ and a right hand limit at $x = 2$. [Level:2] [CO1]
2. Check whether the function $x^4 + 3x$ is even, odd or neither. Justify your answer. [Level:2] [CO1]
3. Discuss the behaviour of $f(x)$ as $x \rightarrow 0$
where $f(x) = \begin{cases} 0, & x \leq 0 \\ \sin \frac{1}{x}, & x > 0. \end{cases}$ [Level:2] [CO1]
4. What is implicit differentiation? Use implicit differentiation to find $\frac{dy}{dx}$ if $y^2 = x$. [Level:3] [CO3]
5. Define average rate of change and instantaneous rate of change of a function $f(x)$. [Level:2] [CO2]
6. State the intermediate value theorem. [Level:1] [CO2]
7. State the constant multiple rule and find the derivative of $3x^2$. [Level:2] [CO2]
8. Define increasing and decreasing functions [Level:1] [CO4]
9. Explain second derivative test for concavity? [Level:1] [CO5]
10. Find $\lim_{x \rightarrow \infty} \frac{5x^2 + 8x - 3}{3x^2 + 2}$ [Level:2] [CO5]

(Ceiling: 24 Marks)**Part B (Paragraph questions/Problem)**Answer **all** questions. Each question carries 6 marks.

11. a) Apply the properties of limits to evaluate $\lim_{x \rightarrow 4} \frac{4x - x^2}{2 - \sqrt{x}}$. [Level:3] [CO1]
- b) If $2 - x^2 \leq g(x) \leq 2 \cos x$, find $\lim_{x \rightarrow 0} g(x)$.

12. Find the center and radius of the circles $x^2 + y^2 - 8x + 4y + 16 = 0$ and $x^2 + y^2 - 3y - 4 = 0$. [Level:2] [CO1]

13. State chain rule and use it to find the derivative of $g(t) = \tan(5 - \sin 2t)$. [Level:3] [CO3]

14. Using definition of derivative, differentiate $y = \sqrt{x}$ for $x > 0$. Find the tangent line to the curve $y = \sqrt{x}$ at $x = 4$. [Level:3] [CO2]

15. Compute the absolute maximum and minimum values of $F(x) = -\frac{1}{x}$, $-2 \leq x \leq -1$ [Level:3] [CO4]

16. Apply the Mean Value Theorem to the function $f(x) = \sqrt{x-1}$ in the interval $[1, 3]$ and determine the value or values of c that satisfy the theorem. [Level:3] [CO4]

17. Find the asymptotes of the curve $y = 2 + \frac{\sin x}{x}$. [Level:2] [CO5]

18. Identify the inflection points and local maxima and minima of the function $y = x^3 + 3x^2 - 4$ and also identify the intervals on which the functions are concave up and concave down. [Level:3] [CO5]

(Ceiling: 36 Marks)

Part C (Essay questions)

Answer any **one** question. The question carries 10 marks.

19. (a) Explain first derivative test for local minimum. [Level:3] [CO4]

(b) Find the critical points of $f(x) = x^{1/3}(x-4) = x^{4/3} - 4x^{1/3}$. Identify the intervals on which f is increasing and decreasing. Find the function's local and absolute extreme values.

20. Graph the function $y = \frac{x^3+1}{x}$ with asymptotes and dominant terms. [Level:3] [CO5]

(1 × 10 = 10 Marks)
