

FIRST SEMESTER UG DEGREE EXAMINATION, NOVEMBER 2025

(FYUGP)

(Regular/Supplementary/Improvement)

CC24UBCA1CJ103 - DISCRETE STRUCTURES FOR COMPUTER APPLICATIONS

(B.C.A. - Major Course)

(2024 Admission onwards)

Time: 2.0 Hours

Maximum: 70 Marks

Credit: 4

Part A (Short answer questions)Answer ***all*** questions. Each question carries 3 marks.

1. Define universal quantifier . Give a sentence using universal quantifier. [Level:2] [CO1]
2. State Inverse law , identity law idempotent law of logic . [Level:1] [CO1]
3. Check whether the function $f(x) = 4x - 2$ is one-one. [Level:2] [CO2]
4. Define set and give 2 example. [Level:2] [CO2]
5. Define equivalence class and give example. [Level:2] [CO2]
6. State Hand-shaking theorem. [Level:2] [CO3]
7. Define simple graph. Give an example. [Level:2] [CO3]
8. Draw a perfect balanced Binary tree with 15 vertices. [Level:2] [CO5]
9. What is a weighted graph. Give an example. [Level:2] [CO5]
10. Define the join of two graphs G_1 and G_2 . Draw the join of the graphs C_5 and K_1 . [Level:2] [CO3]

(Ceiling: 24 Marks)**Part B (Paragraph questions/Problem)**Answer ***all*** questions. Each question carries 6 marks.

11. Show that the propositions $\sim (p \wedge q)$ and $\sim p \vee \sim q$ are logically equivalent [Level:2] [CO1]
12. Find all subsets of $S = \{a, b, c, d\}$. [Level:2] [CO2]
13. Given $f(x) = x^3$ and $g(x) = \sqrt[3]{x}$
 - a) Find $f(g(x))$ and $g(f(x))$. [Level:2] [CO2]
 - b) Find $f(g(2))$ and $g(f(-1))$.

14. Consider the following relations on the set $A = \{1, 2, 3, 4\}$ and Determine which of the relations are symmetric . [Level:2] [CO2]

- $\{(1, 3), (2, 1)\}$
- The empty relation
- $A \times A$, the universal relation

15. Explain edge subdivision, homeomorphs and homeomorphic graphs with suitable examples. [Level:2] [CO3]

16. a) Explain chromatic number of a graph. [Level:2] [CO3]

b) Find the chromatic number of K_5 and C_4 .

17. a) Define a tree, a pendant vertex and draw a tree with 8 vertices among which at least 3 are pendant vertices. [Level:2] [CO4]

b) What is eccentricity of a vertex? Calculate the eccentricity of any vertex in a C_4 .

18. a) Prove that in a Tree, any two distinct vertices are connected by a unique path. [Level:2] [CO5]

b) Prove that a tree with at least two vertices contains at least two pendant vertices.

(Ceiling: 36 Marks)

Part C (Essay questions)

Answer any **one** question. The question carries 10 marks.

19. Construct a truth table for each proposition. [Level:2] [CO1]

- $\sim p \vee \sim q$
- $\sim (\sim p \vee q)$
- $(p \vee q) \vee (\sim q)$

20. a) Given a graph with vertices A, B, C, D , and E with the following edges and weights: $AB - (1)$, $AC - (4)$, $BC - (2)$, $BD - (7)$, $CE - (3)$, $DE - (5)$. Apply Prim's algorithm starting from vertex E . Identify the edges in the MST (Minimum spanning tree) and calculate the total weight. [Level:3] [CO5]

b) Consider a graph with vertices M, N, O, P , and Q and the following edges: $MN - (1)$, $MO - (3)$, $NO - (4)$, $NP - (2)$, $OP - (5)$, $PQ - (6)$. Apply Kruskal's algorithm to determine the edges in the Minimum Spanning tree (MST) and calculate the total weight.

(1 × 10 = 10 Marks)
