

THIRD SEMESTER UG DEGREE EXAMINATION, NOVEMBER-2025

(FYUGP)

CC24UMAT3CJ201 - MULTIVARIABLE CALCULUS

(B.Sc. Mathematics / Mathematics & Computer Science Double Main - Major Course)

(2024 Admission - Regular)

Time: 2.0 Hours

Maximum: 70 Marks

Credit: 4

Part A (Short answer questions)Answer **all** questions. Each question carries 3 marks.

- Find the points in which the line $x = -1 + 3t$ $y = -2$ $z = 5t$ meet the plane $2x - 3z = 7$ [Level:2] [CO1]
- Give parametrization of the circle $x^2 + y^2 = a^2$ in the first quadrant. [Level:2] [CO1]
- Find $\frac{\partial f}{\partial z}$ if $f(x, y, z) = x \sin(y + 3z)$. [Level:2] [CO2]
- At what points (x, y) in the plane is the function $f(x, y) = \sin(x + y)$ continuous? [Level:2] [CO2]
- Find $\frac{dy}{dx}$ if $x^2 + \sin y - 2y = 0$. [Level:2] [CO2]
- Find the local extreme values of $f(x, y) = x^2 + xy + y^2 + 3x - 3y + 4$. [Level:2] [CO3]
- Find the tangent plane and normal line of the surface $f(x, y, z) = 2z - x^2 = 0$ at the point $P_0(2, 0, 2)$. [Level:2] [CO3]
- Calculate $\int_0^3 \int_0^2 (4 - y^2) dy dx$ [Level:2] [CO4]
- Find $\int_0^1 \int_0^1 \int_0^1 dx dy dz$ [Level:2] [CO5]
- Evaluate $\int_0^1 \int_{1-x}^{1-x^2} dy dx$ [Level:1] [CO4]

(Ceiling: 24 Marks)**Part B** (Paragraph questions/Problem)Answer **all** questions. Each question carries 6 marks.

- a) Find the Cartesian coordinates of the points $P(0, \pi/2)$ and $Q(\sqrt{2}, \pi/4)$.
b) Plot the point $(2, \pi/2)$, then find all the polar coordinates of the point. [Level:3] [CO1]
- a) Define Spherical coordinates and cylindrical coordinate
b) Find cylindrical and spherical coordinate corresponding to the rectangular coordinate $(1, 0, 0)$ [Level:3] [CO1]

c) Find Rectangular and spherical coordinate corresponding to the cylindrical coordinate $(1, \frac{\pi}{2}, 1)$

13. Define graph and level curve of a function f . Graph $f(x, y) = 100 - x^2 - y^2$ and plot the level curves $f(x, y) = 51$, and $f(x, y) = 75$ in the domain of f in the plane. [Level:3] [CO2]

14. Find the linearization of $f(x, y) = x^2 + y^2 + 1$ at the point $(0, 0)$. [Level:3] [CO2]

15. Find the derivative of $f(x, y) = xe^y + \cos(xy)$ at $P_0(2, 0)$ in the direction of $A = 3i - 4j$. [Level:2] [CO3]

16. Find the absolute maximum and minimum values of $f(x, y) = 2 + 2x + 2y - x^2 - y^2$ on the triangular plate in the first quadrant bounded by the lines $x = 0$, $y = 0$, $y = 9 - x$. [Level:3] [CO3]

17. Find the average value of $F(x, y, z=x^2 + 9)$ over the cube in the first octant by the coordinate planes and the planes $x = 2, y = 2$ and $z = 2$. [Level:3] [CO5]

18. Find the polar moment of inertia about the origin of a thin plate of density $\delta(x, y) = 1$ bounded by the quarter circle $x^2 + y^2 = 1$ in the quadrant [Level:2] [CO4]

(Ceiling: 36 Marks)

Part C (Essay questions)

Answer any **one** question. The question carries 10 marks.

19. The plane $x + y + z = 1$ cuts the cylinder $x^2 + y^2 = 1$ in an ellipse. Find the points on the ellipse that lie closest to and farthest from the origin. [Level:3] [CO3]

20. A thin plate covers the triangular region bounded by the y axis and the line $y = 1$ and $y = x$ in the first quadrant. The plate's density at the point (x, y) is $\delta(x, y) = 4x + 2y + 1$. Find the plate's mass, first moments, center of mass. [Level:3] [CO4]

(1 × 10 = 10 Marks)
