

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2025

(CBCSS - UG)

CC19UPHY3B03 / CC20UPHY3B03 - ELECTRODYNAMICS - I

(Physics - Core Course)

(2019 to 2023 Admissions - Supplementary/Improvement)

Time : 2.00 Hours

Maximum : 60 Marks

Credit : 3

Part A (Short answer questions)Answer ***all*** questions. Each question carries 2 marks.

1. What is meant by displacement vector and separation vector?
2. What is the physical interpretation of divergence of a vector field?
3. Write down the expression for the elemental volume and elemental area of the curved surface of a cylinder in cylindrical coordinate system.
4. Define electric field. How is it measured? Give an expression for the field due to a point charge.
5. What is electric potential?
6. What do you mean by the polarization vector P . what is its value for free space?
7. What is electric susceptibility?
8. What is the physical significance of $\nabla \cdot B = 0$?
9. Write down magnetostatic boundary conditions.
10. What are bound currents?
11. The Ampere's law uniquely determines B , if we know all the current densities. But it does not always give H uniquely. Why?
12. Explain magnetic susceptibility of a material.

(Ceiling: 20 Marks)**Part B (Short essay questions - Paragraph)**Answer ***all*** questions. Each question carries 5 marks.

13. State and explain the fundamental theorems of Divergence and curl.
14. Find electric field inside and outside a parallel plate capacitor using Gauss flux theorem.
15. What is a cylindrical capacitor? Find an expression for its capacitance.
16. Find an expression for the force acting on a dipole in a non-uniform electric field.

17. Find the polarization P in a dielectric material with relative permittivity 2.8, if electric flux density $D = 0.003nC/m^2$ Assume that the material is homogenous and isotropic.
18. A particle of charge $10-20 C$ is moving with a velocity $8 \times 10^6 i \text{ m/s}$. It enters a region of electric field $10^6 j \text{ V/m}$ and magnetic field $0.2i \text{ T}$. Find the force that will act on it.
19. Distinguish between para, dia and ferromagnetic materials.

(Ceiling: 30 Marks)

Part C (Essay questions)

Answer any ***one*** question. The question carries 10 marks.

20. With the help of suitable diagrams, derive the boundary conditions for electric field vector E . Also obtain the boundary conditions for electric potential.
21. Discuss the motion of electric charges in transverse electric and magnetic fields '.

(1 × 10 = 10 Marks)
