

THIRD SEMESTER UG DEGREE EXAMINATION, NOVEMBER 2025

(FYUGP)

CC24UPHY3CJ201 - MECHANICS – I

(B.Sc. Physics / Physics & Computer Science Double Major - Major Course)

(2024 Admission - Regular)

Time: 2.0 Hours

Maximum: 70 Marks

Credit: 4

Part A (Short answer questions)Answer ***all*** questions. Each question carries 3 marks.

1. State the law of conservation of momentum. [Level:1] [CO1]
2. Give an real-life example of an elastic collision. [Level:1] [CO3]
3. A solid sphere and a hollow sphere of the same mass and radius rotate about the same diameter. Which one has the larger moment of inertia? Analyse how mass distribution affects inertia. [Level:4] [CO1]
4. A person is sitting on a rotating swivel chair holding dumbbells in both hands. When the person pulls the dumbbells closer to the chest, the chair rotates faster. Justify your answer. [Level:4] [CO1]
5. State the expression for the total kinetic energy of a rigid body undergoing combined translation and rotation. [Level:1] [CO3]
6. Define the term couple and explain how it produces rotation without translation. [Level:2] [CO3]
7. Derive the expression for the moment of inertia of a thin rod about its center. [Level:1] [CO2]
8. State the key features of equipotential surface. [Level:1] [CO5]
9. Define Gauss Divergence theorem. [Level:1] [CO5]
10. Define a completely in elastic collision. [Level:1] [CO3]

(Ceiling: 24 Marks)**Part B** (Paragraph questions/Problem)Answer ***all*** questions. Each question carries 6 marks.

11. A space vehicle of initial mass 50,000 kg (including fuel) ejects gases at 3500 m/s. If it consumes 40,000 kg of fuel, find the velocity attained. [Level:1] [CO1]

12. You are winding a fishing reel and the spool is slowing to a stop. The angular velocity of the spool at $t=0$ is 50.0rad/s , and its angular acceleration is a constant -15.0rad/s^2 . A line on the surface of the spool lies along the $+x$ -axis at $t=0$. (a) What is the spool's angular velocity at $t=0.500\text{s}$? (b) What angle does the line on the spool make with the $+x$ -axis at this time? [Level:4] [CO1]

13. A satellite is in a circular orbit around a planet with a radius of $6.8\times 10^6\text{m}$. At a certain point in its orbit, its angular speed is $7.5\times 10^{-4}\text{rad/s}$ and its angular speed is increasing at a rate of $2.0\times 10^{-7}\text{rad/s}^2$. At this instant, find the tangential and centripetal components of the satellite's acceleration, and the magnitude of the total acceleration. [Level:4] [CO1]

14. A disk starts from rest and accelerates such that its angular velocity is given by $\omega(t)=100\sin(2t)$, where ω is in rad/s and t in seconds. If the moment of inertia of the disk is $1.2\text{ kg}\cdot\text{m}^2$, find: (a) The angular momentum at $t=1.0\text{ s}$. (b) The torque acting at $t=1.0\text{s}$. [Level:2] [CO2]

15. Derive an expression for the angular velocity of precession of a symmetric gyroscope of mass M , spinning with angular speed ω , in terms of torque and angular momentum. [Level:2] [CO2]

16. A long thin rod of length L lies along the x -axis. The end points of the rod are at $x'=0$ and $x'=L$. Assume the rod can be represented as a continuous mass distribution with linear density λ mass per unit length. Determine the gravitational field at the point $x=4L$. [Level:3] [CO5]

17. A particle of mass m is located at $(2,2)$, a particle of mass $3m$ is located at $(3,4)$. Determine the gravitational force acting on the particles of masses m and $3m$ in vector form. [Level:3] [CO5]

18. Two particles in plane: $m_1=2\text{ kg}$ at $(1,2)$, $m_2=3\text{ kg}$ at $(4,6)$. Find $(x_{\text{cm}},y_{\text{cm}})$ [Level:1] [CO1]
(Ceiling: 36 Marks)

Part C (Essay questions)

Answer any **one** question. The question carries 10 marks.

19. Discuss Practical applications of angular acceleration. Analyze how controlling angular acceleration is important in machines like washing machines, turbines, or vehicles. [Level:4] [CO1]

20. Define gravitational field with equation. A point mass M is located at the origin. Another point mass M is located at $(0,4)$. Determine the gravitational field at $(0,3)$ and $(3,0)$ [Level:3] [CO5]

(1 × 10 = 10 Marks)
