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Abstract

The low dielectric constant of organic semiconductors has been a limiting factor in the organic
photovoltaics. Non-Fullerene Acceptor Bulk Heterojunction (NFA-BH]) organic solar cells with high
dielectric constant acceptors have been gaining a lot of attention. No simulation work has been done
on NFA-BH]J organic solar cell with a high dielectric constant acceptor so far to study the influence of
various material parameters on the device performance. In this work, a comprehensive device
modelling of the conventional structure of NFA-BH] with poly[(2,6-(4,8-bis(5-(2-ethylhexyl)
thiophen-2-yl)benzo[1,2-b:4,5-b’]dithiophene)-co-(1,3-di(5-thiophene-2- yl)-5,7-bis(2-ethylhexyl)
benzo[1,2-c:4,5-c’]dithiophene-4,8-dione)] (PBDB-T)as the polymer donor and (3,9-bis(2-methy-
lene- (3-(1,1 -dicyanomethylene)-indanone)-5,5,11,11-tetraki(4-hexylphenyl)-dithieno [2,3-d:2,3-
d]-s-indaceno [1,2-b:5,6-b]dithiophene)) with Oligo-Ethylene side chain (ITIC-OE) as the non-
fullerene acceptor is performed. We did a detailed analysis on the impact of technological parameters
on the cell performance and optimized the device characteristics to produce improved efficiency.
Numerical simulation is done using SCAPS 1-D program and the validity of simulated output has
been verified by comparing with the measurements from reported literature. Optimization of the
device parameters produced an improved device performance with an open circuit voltage 0of 0.9562 V
, short circuit current density of mA cm ™2, Fill factor of 69.75% and a power conversion efficiency of
11% . The results are encouraging to develop NFA-BH]J organic solar cells with high dielectric constant
acceptors in the near future.

1. Introduction

Organic solar cells(OSC) have shown a lot of potential over the last few years thanks to the ease of material
availability as well as low cost, along with improved efficiency [1-4]. Since 2000s, Bulk heterojunction solar cells
with polymer donors and fullerene acceptors have been showing tremendous improvement [5]. The 3-D
conjugated cage structures of fullerene acceptor molecules allowed them to have better device performance, but
the contribution of acceptor layer to the photocurrent is limited [6—9]. An attractive alternative is the use of
Non-Fullerene acceptor which overcomes the morphological instability and poor optical properties of
fullerenes [10—18]. However, the relatively low dielectric constant(e,) values of the organic semiconductors have
been a limitation for organic solar cell due to their high exciton binding energy [19-24].

Studies show that an improved €, can provide better device performance with reduced charge carrier
recombination along with providing more efficient charge separation pathway for the donor-acceptor interface,
thus enhancing the short circuit current density and fill factor[20-2420-24].ITIC (3,9-bis(2-methylene- (3-(1,1
-dicyanomethylene)-indanone)-5,5,11,11-tetraki(4-hexylphenyl)-dithieno [2,3-d:2,3-d]-s-indaceno [1,2-
b:5,6-b]dithiophene)) is one of the dominant acceptor in Non-Fullerene Acceptor Bulk Heterojunction (NFA-
BHJ) OSC [25-28]. Itis reported in literature that Oligoethylene(OE) side chain improves the ¢, of organic
semiconductors [29-33]. Addition of OE side chain to ITIC results in acceptor of ¢, = 9, much larger than ITIC
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Figure 1. Simulated solar cell (a) configuration of the cell (b) Enegy band alignment.

[34]. Being an ITIC derivative with OE side chain, the optical properties are same to that of ITIC with significant
improvement in the dielectric constant due to the better orientations of dipole moments originating from the
additional side chain [29]. The improved e, value reduces the energy gap between singlet-triplet system,
effectively blocking the recombination of charge carriers [20, 35].

An experimental work on NFA-BHJ with ITIC-OE acceptor has been recently reported in the literature [34].
Device modelling is an efficient tool to understand the device operation and for optimizing the NFA-BH]J [36].
Since there is no computational work available for non-fullerene BH]J solar cell with ITIC-OE acceptor, the
simulations can provide the necessary prerequisites for the high €, acceptor to become an important part of
organic solar cell research.

Solar cell capacitance simulator (SCAPS) is widely used to simulate various types of solar cells including
NFA-BH]J [36—44]. The calibration of software can be done using control variable method and the experimental
work can be reproduced successfully. In this work, SCAPS is used to numerically simulate NFA-BHJ OSC with
PBDB-T (poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b’]dithiophene)-co-(1,3-di(5-
thiophene-2-yl)-5,7-bis(2-ethylhexyl) benzo [1,2-c:4,5-¢'] dithiophene-4,8-dione)]) as the polymeric donor and
ITIC-OE as the NFA acceptor having PEDOT : PSS as the hole transport layer(HTL) and PFN-Br as the electron
transport layer (ETL) . A comprehensive device modelling is done for NFA-BH]J OSC to study the influence of
the technological parameters on the output performance of the organic solar cell.

2. Numerical modelling and material parameters

One dimensional Solar Cell Capacitance Simulator-SCAPS version (3.3.06) has been used as the numerical
simulation tool. It solves both the electrical model and optical model over the entire configuration. The
experimental work on PBDB-T/ITIC-OE is simulated in SCAPS 1-D under AM 1.5 G Spectrum and material
parameters are calibrated using control variable method.

The configuration of the simulated bulk heterojunction structure is Glass substrate/ITO/PEDOT : PSS/
PBDB-T/ITIC-OE/PEN-Br/Agas shown in figure 1. along with the energy band diagram. The material
parameters used in the simulation are depicted in table 1. The given parameters E, is the energy bandgap, e, is the
relative permittivity, x being the electron affinity, 11, and j,, are the electron and hole mobilities, N, is the defect
density respectively. N, and Np, are the densities of acceptor and donor materials whereas Ncand Ny are the
effective densities of conduction band and valence band. Identical values are used for parameters not mentioned
in the table such as neutral Gaussian distribution of defect density with the characteristic energy setto 0. 1 eV.
Additionally, electron and hole thermal velocity is set to 10" cm s~ . The electron and hole capture cross section
istakentobe9 x 107> cm?. The work function of anode is set at 4.7 €V [45] and cathode is set at 4.1eV. The
interface defect density hasbeen setto2 x 10° cm™* where the defect interfaces are HTL/Active and Active/
ETL. The dielectric constant of active layer is obtained by averaging the values of ¢, of donor and acceptor
materials [34] and the energy gap is optimized to fit the simulated data [46]. The absorption profile is taken from
the experimental work on PBDB-T/ITIC-OE [34].The optimized parameters are fed into the SCAPS simulator
with no optical reflectance being considered.
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Table 1. Numerical parameters used in the simulation.

Parameters HTL Active layer ETL
Thickness(nm) 40[34] 100 [34] 5[34]
Eg(eV) 1.6 [47] 1.2[46] 2.98[48]
x(eV) 3.4[47) 4.03 [34] 4[36]
€ 3[47] 6.1[34] 5[36]
J(cm?/vs) 45 % 107" 1.2 x 107° 2x107°
[36] [34] [36]
plem®/vs) 9.9 x 107° 35 x 107 1x 107"
[36] [34] [36]
Nu(cm™) 2 x 10'® 0 0
Np(cm™>) 0 7.5 x 10'® 9 x 10'®
N(em™) 10%2[47] 10" 10" [36]
Ny(cm™) 10%[47] 10" 10" [36]
N (cm™>) 10°[36] 102 10° [36]

Table 2. Comparison of simulated output with
experimental result.

Experimental Simulated
Voc(V) 0.85 0.8491
Jsc(mA/cm?) 14.8 14.616
FF(%) 67 66.88
PCE(%) 8.5 8.3

The simulated solar cell output parameters; Open circuit voltage(Voc), Short circuit current density(Jsc),Fill
Factor(FF) and Power Conversion Efficiency(PCE) are compared with the experimental result as in table 2. The
results are in close agreement with the experimental values, thus validating the simulation and demonstrating
that SCAPS software is perfectly calibrated for non-fullerene organic solar cells.

The illuminated current density-voltage(J-V) curve and External Quantum Efficiency (EQE)curve are
shown in figure 2. and are consistent with the experimental results of non-fullerene organic solar cells [34]. It
shows that the input parameters are extremely close to the real parameters of the device. The calibrated cell is
simulated to analyse the impact of material parameters on the output and enhancing the PCE by optimizing the
input values.

3. Results and discussion

3.1. Effect of active layer thickness
The non-fullerene OSC is simulated at different active layer thickness ranging from 50 nm to 250 nm and the
variation of output parameters with the thickness is studied as given in figure 3.

On increasing the thickness of active layer, Voc increases slightly until 200 nm and starts to decrease on
further increase, Voc depends on the dark saturation current and it is decreased at higher thickness [49]. But the
rate of decay is low for values above 220nm making it the optimized input value for Voc. Itis seen in literature
that the ITIC-OE based devices have dominant monomolecular and or/ trap-assisted recombination
mechanisms owing to the blend morphology [34].

The Jsc and PCE shows a steady increase with peak values of 16.38 mA cm ™ and 9.06% respectively at
220 nm. On further increasing the thickness, Jsc and PCE starts to decrease . The improvement in PCE and Jsc
can be attributed to the increased charge generation on increasing thickness. The active layer thickness of a
photovoltaic cell should be in agreement with the exciton diffusion length.As the thickness increases beyond
220 nm,the diffusion length becomes lesser than the active layer thickness and the generated electron-hole pairs
are recombined before undergoing charge separation. The fill factor significantly drops from 68.99% to 64.43%
on increasing the thickness indicating that the series resistance of non-fullerene organic solar cell increases with
the active layer thickness as already reported [35].

3.2. Effect of defect density of the active layer
The effect of defect density on the output performance of solar cell is studied using the SRH recombination
model [50] with the equation being:
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Figure 2. Simulated output from SCAPS (a) J-V curve and (b) EQE curve.
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where n, p refers to the mobile electron-hole concentration, and n,,p, being the trap defect concentration with
n,the intrinsic concentration. The lifetime 7 is given by the relation [51]:

r=— @
oVin N

with o being the capture cross section and N, the trap defect density and V;, being the carrier thermal velocity.
The exciton diffusion length is given by L = /D7 where D is the diffusion constant.

equations indicate that on increasing N, ,the lifetime 7 decreseas thereby reducing the diffusion length and
leads to high recombination rate. The simulated values of diffusion length and lifetime by setting the same
parameters for electron and hole are given in table 3.

As shown in figure 4., on increasing Nt from 10'°to 10" cm >, the output parameters fall off drastically in
agreement with the equation (1).The PCE shows a drop from 9.17% and 1.19% significantly, we have set the
calibrated value of Ntat 10> cm 2 since the diffusion length corresponding to 10'' cm ™ cannot be realised in
experiment [51].

3.3. Effect of doping density of active layer

The performance of BHJ organic solar cell as a function of doping density is already reported in literature [52].
We studied the influence of doping concentration on non-fullerene BHJ by changing the value from 10" to
10*°cm ™ as shown in figure 5. Voc changes only slightly while the Jsc value drops from 15.994 mA cm ™ to
13.5 mA cm™ 2. It can be attributed to the degradation of cell performance while optimised BHJ doping reduces
the electric field of active layer; FF and PCE shows steady increase upon improved doping density which can be

4
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Table 3. Variation of diffusion length and lifetime of electron with

defect density.

N(cm™>) 10" 10" 10" 10" 10
L,(pm) 0.19 0.059 .019 .0059 .0019
(1) 1100 110 11 1.1 0.11

due to unbalanced charge carrier mobilities. The doping increases the cell performance by compensating for the
space charge created by slower carriers and reducing the recombination of free carriers [52].

3.4. Effect of defect density at interface layers

Two defined interfaces are Active/ETL and and HTL/Active. The defect densities of two interfaces have been
increased from 10" cm 2 to0 10" cm™* to study the effect on output parameters. As already seen in figures 6 and
7., defect densities will provide more traps leading to lower cell performance. The effect is shown only at the
HTL/Active interface where FF and Voc shows significant drop leading to lower PCE while Jsc is decreased only
slightly upon increasing the interface defect density. But, when we consider the Active/ ETL interface, the defect
density doesn’t effect the cell performance at all showing consistent output except at 10'° cm 2. This can be
attributed to the fact that the illumination of the device is from the front contact in its conventional pathway and
HTL/Active interface defect is dominant in the structure.

3.5. Effect of HTL and ETL characteristics
Here, we study the effect of input parameters of HTL and ETL layers such as thickness, doping concentration,
electron affinity and mobility on the solar cell performance.

The thickness of HTL layer has been varied from 30 to 50 nm as shown in figure 8, while that of ETL layer has
been varied from 3 to 9 nm as in figure 9. On increasing the thickness of HTL layer, Voc is improved slightly
while Jsc linearly increases until 48 nm and drops down after that. FF rather shows a unique variation with step-
wise jumping at 36 nm and 46 nm, with a constant value following those. However, the variation is too small to
have an impact on the output. The PCE shows a constant value upon increasing the HTL layer thickness making
it clear that the transport layer doesn’t effect the series resistance of non-fullerene solar cell made up of ITIC-OE
acceptor. Upon increasing the ETL layer thickness, there is only a slight increase in Voc and Jsc, while a slight
decrease in FF value. However, the PCE is almost constant with a negligible drop towards the end.
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10

Increasing the doping concentration of HTL results in improving the output performance of solar cell . This
can be attributed to the increase in conductivity of the cell leading to a reduced series resistance. The ETL layer
follows a similar trend as shown in figures 10 and 11.

The effect of mobility is shown in figures 12 and 13. The hole mobility of HTL layer mobility is being
increased from 10~ cm? /versus to 10~> cm?®/versus and electron mobility of ETL layer being increased from

8
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107

1077 cm®/versus to 10~ cm?/versus. The output is similar to the one obtained on changing the doping
concentration further convincing the increase in conductivity of the material due to mobility effect.

The electron affinity of HTL layer is increased from 3 eV to 3.8 eV and that of ETL layer is increased from
3.7eVto4.3 eV. The PCE 0f 8.31% and 8.35% are achieved for optimum values at 3.5 eV and 4.1 eV

10
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Table 4. Optimized numerical parameters.
Parameters ETL Absorber HTL
Doping density(cm ) — — 10"
Electron affinity(eV) 4.1 — 35
Thickness(nm) — 220
Hole mobility(cmzvflsfl) — — 5% 1077

respectively. The results are shown in figures 14 and 15. As it appears, the optimum electron affinities reduce the
bandgap offset leading to a better energy alignment and helps in improved charge transport between active and
transport layer of the non-fullerene organic solar cell [36].

3.6. Effect of Operating temperature

The operating temperature is varied from 280 K to 400 K for the simulation and its effect on output performance
is studied . Asitappears in figure 16, the increase in temperature shows a significant drop in Voc of the cell from
0.8528 V10 0.7641 V. It may be due to the increased recombination rate resulting from a higher value of
saturation current. The Jsc has improved slightly due to the increase in the number of thermal carriers. FF shows
asteady improvement from 65.32% to 71.83% and degrades after 360 K as a result of saturation current. PCE
shows a slight improvement with a peak value of 8.59% at 340 K and degrades after that, Here the significant
improvement of FF dominates over the degradation of Voc of solar cell.

The optimized numerical parameters are summarized in table 4 with an improved output comprising Voc of
0.9562V, Jsc of 16.4997mA cm 2, FF 0f 69.75% and PCE of 11%. We compared the simulation results with the
original experimental work in table 5. These optimizations show that PCE can be further enhanced for high
dielectric constant NFA-BH]J organic solar cell in the near future.
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Table 5. Comparison of device performance of the NFA-BH] reported in the experimental work and simulated results using optimized

numerical parameters.

Parameters Experiment Simulation Optimized thickness Optimized x Optimized(N 4,11,) Final

Voc(V) 0.85 0.8491 0.8531 0.8585 0.8559 0.9562
JscOmA/cm?) 14.8 14.616 16.32 14.569 14.74 16.4997
FF(%) 67 66.88 65.05 67.01 74.13 69.75

PCE(%) 8.5 8.3 9.06 8.38 9.35 11

4, Conclusion

Numerical studies on non-fullerene BHJ OSC with high dielectric constant ITIC-OE acceptor with the structure
ITO/PEDOT : PSS/ PBDB-T/ITIC-OE/PEN-Br/Agis performed. The results are verified by comparing
simulated results with the experimental work reported in literature. The cell performance is in close agreement
with the real device performance. We have studied the influence of thickness, doping concentration and defect
density of the absorber layer, operating temperature, defect density at HTL/Active and Active/ETL intefaces,
transport layer characteristics on the cell performance and optimised the parameters to improve PCE. The
simulated output shows that the cell performance is significantly improved with a higher doping density due to
unbalanced carrier mobilities. PCE is improved upto 220 nm thickness of active layer and it is clear from the
simulated results that alower defect density of active layer is ideal for better solar cell output. The HTL/Active
interface defect density effects the cell performance while ETL/Active interface is insignificant. Higher operating
temperature degraded the device performance. The transport layer characteristics are optimized in the
simulation. The thickness of HTL and ETL layers have negligible influence on the PCE while optimized values of
hole mobility of HTLis 5 x 107> cm® V™' s~ ' and the doping densityis 10'* cm . The electron affinities of
HTL and ETL are optimized at 3.5 eV and 4.1 eV respectively. The cell performance with optimized numerical
parameters are Voc = 0.9562V, Jsc = 16.4997mA cm ™2, FF = 69.75% and PCE = 11%. The numerical
simulation studies show that the device performance of NFA-BHJ OSC with ITIC-OE acceptor can be improved
to obtain enhanced PCE through the optimization of material parameters of the cell. The studies also indicate
that ITIC-OE is an ideal candidate for acceptor material in organic solar cell to achieve higher efficiencies in the
near future.
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