0	0	0	1	0
	80.0			100
	w	~.	V P	Co.

(Pages: 3)

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2015

(U.G.—CCSS)

Core Course-Mathematics

MM 5B 08-DIFFERENTIAL EQUATIONS

Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Find an integrating factor of xdy - ydx = 0?

Does $\frac{dy}{dt} = e^t$ basic a solution passing through (0,1)?

Find the solution of y'' - 4y' + 4y = 0.

Find the differential equation whose solution is $y = c_1 e^{kx} + c_2 e^{-kx}$.

Are x and x^2 linearly independent.

What is the Laplace Transform of sinh at?

State the shifting properly of Laplace Transforms.

Define step function.

Give the wave equation.

Is the function $f(x) = x^2 \cos nx$ even.

If f(x) is an odd function, the coefficient of cosines in the Fourier series expansion of f(x) is ————.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Part B

Answer all questions.

Solve
$$x(1+y^2)dx + y(1+x^2)dy = 0$$
.

Show that $\mu(x) = x$ is an integrating factor of $(x^2 - 2x + 2y^2)dx + 2xy dy = 0$.

- 15. State the existence and uniqueness theorem for solution of a first order differential equation
- 16. y''' + 8y'' + 16y = 0 Solve this.
- 17. Solve $y'' y' 6y = 20e^{-2x}$.
- 18. Find $L\left\{e^{-7t}\cos 3t\right\}$.
- 19. Find $L^{-1} \left\{ \frac{1}{(s+9)^3} \right\}$.
- 20. Find a_0 for the periodic function (of period 2π): $f(x) \begin{cases} -k, & -\pi < x < 0 \\ k, & 0 < x < \pi. \end{cases}$
- 21. Define the convolution integral and show that it is commutative.

 $(9 \times 1 = 9 \text{ weight$

Part C

Answer any five questions.

- 22. Solve $\frac{dy}{dx} = \frac{x + 2y 3}{2x + y 3}$.
- 23. (i) Define linear and non-linear first order differential equations with examples.
 - (ii) When is a differential equation said to be exact? Derive a necessary and sufficient cofor Mdx + Ndy = 0 to be exact.
- 24. Show that $y = c_1 x + c_2 x^2$ is the general solution of $x^2 y'' 2xy' + 2y = 0$ on any intercontaining zero and find the particular solution for which y(1) = 3 and y'(1) = 5.
- 25. Find the general solution by the method of variation of parameters : y'' 2y' + y = 2x.
- 26. Using the method of Laplace Transforms, solve $y'' 3y' + 2y = 4e^{2t}$, y(0) = -3, y'(0) = 5
- 27. Using convolution properly, show that $L^{-1}\left\{\frac{1}{(s-2)(s-3)}\right\} = e^{3t} e^{2t}$.
- 28. Show that $u = e^{nx + iny}$ and $u = e^{nx iny}$ are both solutions of $u_{xx} + u_{yy} = 0$.

 $(5 \times 2 = 10 \text{ we})$

Part D

Answer any two questions.

29. Solve
$$(D^2 + 2D + 5)y = x + \sin 2x$$
.

30. Find the Fourier series of
$$f(x) = |x|$$
 in $[-\pi, \pi]$ and deduce that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$

31. Solve by the method of separation of variables:
$$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$$
 where $u(x, 0) = 6e^{-3x}$.

 $(2 \times 4 = 8 \text{ weightage})$