-	~	-	March .
-			
-			
	.,	٠,	* B

P	0	ď	0	0	2
I	а	Ľ	e	S	0

Nam	e	 *****	 *******	•••
Rog	No		A	1

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2015

(CUCBCSS-UG)

Complementary Course - Chemistry

CHE 2C 02 – Complementary Course II – PHYSICAL CHEMISTRY

Three Hours Maximum: 64 Marks

Section A (One Word/Sentence)

	Answer all questions.			
	Each question carries 1 mark.			
1.	According to the third law of thermodynamics, the entropy of a perfect crystal is zero at			
	200 K. Calculate the value of internal energy thanse at the same wenterns			
2.	The average velocity of a gas varies directly as the square root of			
3.	Name the most unsymmetrical crystal system.			
4.	solids are anisotropic.			
5.	The maximum number of Bravai's lattices possible for crystals is			
6.	Write the S.I. unit of surface tension.			
7.	Viscosity of a liquid with increase in temperature.			
8.	Specific conductance is the reciprocal of			
9.	When Na ₂ CO ₃ is dissolved in water the pH of the solution will			
0.	For ${ m Al}_2({ m SO}_4)_3$ solution, the equivalent conductance λ eq and molar conductance λ m are related			
	as			
	$(10 \times 1 = 10 \text{ marks})$			
	Section B (Short Answer)			
	Answer any seven questions.			
	Each question carries 2 marks.			
1.	State the first law of thermodynamics.			
2.	What are open and closed systems? Give one example each.			
13.	Write the vander Waal's equation for 'n' moles of a gas and explain the terms.			
4.	Calculate the RMS velocity of hydrogen molecule at 300 K.			
15.	Calculate the Miller indices of a plane whose intercepts are 2a, 3b and 2C.			
6.	State Henry's law.			

- 17. Write any two factors that affect the vapourisation of a liquid.
- 18. Write any four advantages of conductometric titrations.
- 19. The molar conductance of infinite dilution of CH_3COONa , HCl and NaCl in S cm² mol-191,426.2 and 126.5 respectively. Calculate the λm^{α} value of CH_3COOH .
- 20. The resistance of a 10^{-2} N solution of a weak acid is 5×10^3 ohms, in a conductivity cell constant 0.5 cm⁻¹. Calculate the equivalent conductance of the solution at this concentration.

 $(7 \times 2 = 14 \text{ m})$

Section C (Paragraph)

Answer any four questions.

Each question carries 5 marks.

- 21. (i) Derive an equation to relate the enthalpy change and internal energy change of a rea
 - (ii) The enthalpy change for the reaction ${\rm CH_{4(g)}} + 20_{2(g)} \rightarrow {\rm Co_{2(g)}} + 2{\rm H_2O_{(l)}}$ is -890.5 300 K. Calculate the value of internal energy change at the same temperature.
- 22. (i) State the second law of thermodynamics based on entropy.
 - (ii) The enthalpy of vapourisation of water is 40.6 kJ mol⁻¹ aT 100° C. Calculate the en of vapourisation at 100° C.
- 23. What are the features of Maxwell's distribution curve? Explain the effect of temperature the distribution.
- 24. Explain reverse osmosis. Write any two applications of reverse osmosis.
- What are reference electrodes? Explain the construction and working of a standard Hyd Electrode.
- 26. Explain the effect of dilution in the specific conductance and molar conductance of a electrolyte.

 $(4 \times 5 = 20 \text{ r})$

Section D (Essay)

Answer any two questions.

Each question carries 10 marks.

- 27. (i) What is the physical significance of Gibb's free energy? Explain the effect of tempe in the spontaneity of a reaction.
 - (ii) The enthalpy change and entropy change for the decomposition of H₂O₂, are mol⁻¹ and 132 J mol⁻¹ respectively. Predict the feasibility of the process at 300 K

(6 + 4 = 10)

- 28. (i) What are liquid crystals? Name the different types of liquid crystals. Mention as applications of liquid crystals.
 - (ii) Explain the different types of stoichiometric defects.

(6 + .4 = 10)

- 29. (i) From the laws of osmotic pressure, derive an equation for the molecular mass of a solute.
 - (ii) Write the cell reaction taking place in the electrochemical cell Zn/Zn²+ (10⁻³ m) \parallel Ag+ (10⁻¹ m) \parallel Ag and calculate the EMF of the cell at 25° C. Given E⁰Zn²+/Zn = -0.76 V and E⁰Ag+/Ag = 0.80 V.
- 30. (i) What are buffer solutions? How are they classified? Derive an equation for the pH for a buffer.
 - (ii) Explain the working of a H_2 - O_2 fuel cell.

(6 + 4 = 10 marks)

 $[2 \times 10 = 20 \text{ marks}]$