-	-	-	-	-
	-,		8 3	αъ
-	-		9 8	~

(Pages: 3)

Nam	e	••••••	
Reg.	No		4:

SECOND SEMESTER B.C.A. DEGREE EXAMINATION, MAY 2015

(CUCBCSS—UG)

Complementary Course								
	BCA 2C 03—COMPUTER ORIENTED STATISTICAL METHODS							
	Three Hours Maximum: 80 Marks							
	Section A							
Answer all ten questions.								
	The pair (X,Y) takes values (5, 8) and (-1, 2). Then the correlation between X and Y is:							
	(a) 0. (b) 1.							
	(c) -1. (d) Cannot say.							
The limiting relative frequency approach of probability is known as:								
	(a) Axiomatic probability. (b) Classical probability.							
	(c) Statistical probability. (d) A priori probability.							
L	If $P(X \le M) = P(X \ge M)$, then M is:							
	(a) A.M. (b) Median.							
	(c) G.M. (d) H.M.							
Ę	For a Poisson distribution which of the following is true?							
	(a) Mean < Variance. (b) Mean > Variance.							
	(c) Mean ≥ Variance. (d) Mean = Variance.							
Ē	The Level of significance is the probability of:							
	(a) Type I error. (b) Type II error.							
	(c) Not committing an error. (d) None of the above.							
Ē.	The empirical relation between Mean, Median and mode is ———.							
	is a measure of dispersion which utilizes only extreme values.							
Ė	If A and B are two events and their union is the sample space, then $P(A^c \cap B^c) =$							
E.	If X_1 and X_2 are two independent standard normal variables, then the ratio of their squares follows ———— distribution.							
	1-Probability of type II error is called ———.							
	$(10 \times 1 = 10 \text{ marks})$							

Section B

Answer all five questions.

- 11. What is an average? Define AM, GM, HM.
- 12. Define mutually exclusive events and independent events. Give one example for each.
- 13. Define r^{th} raw moment and r^{th} central moment. Evaluate the first two of each.
- 14. Distinguish between statistic and parameter. Give an example for each.
- 15. Define two types of errors.

 $(5 \times 2 = 10 \text{ mark})$

Section C

Answer any five questions.

16. Find the A.M and Median of the following data:-

Class ...
$$0-10$$
 $10-20$ $20-30$ $30-40$ $40-50$ Frequency ... 6 14 20 12 8

17. Find the quartile deviation of the data given below:

х	10	20	30	40	50	60	70	80
Frequency	6	12	15	20	12	10	8	7

18. Fit the line Y = A + BX:

- 19. Write the p.m.f. of Poisson distribution with mean λ . Evaluate the probabilities for X=0, when $\lambda=2$.
- 20. Derive the m.g.f. of binomial distribution. Hence find its mean and variance.
- 21. Define t, χ^2 and F distributions.
- 22. Distinguish between point estimate and interval estimate. Write the 95% confidence interval the mean and variance of normal population.
- 23. Find the mean and variance of the following distribution:-

 $(5 \times 4 = 20 \text{ ma})$

Section D

Answer any five questions.

43

Compute Karl Pearson's correlation coefficient:

Find the coefficient of variation for the following data:

If $f(x, y) = e^{-x-y}$, $0 < x, y < \infty$, find the conditional distributions of X given Y and Y given X.

A random sample of size 64 is taken from a normal distribution with mean 100 and standard deviation 80. Find:

(a)
$$P(\bar{X} < 80)$$
; (b) $P(80 < \bar{X} < 120)$; (c) $P(\bar{X} > 90)$.

The probability of a light bulb produced by a company is defective is .001. In a box contains 100 bulbs. In a consignment of 1000 boxes how many boxes will have : (i) no defective ; (ii) exactly 1 defective.

In a survey, 1200 persons selected at random were asked their opinion whether an MP's term is to be limited to 3 years in the parliament. Out of this sample, 780 persons opined Yes. Construct a 995 confidence interval of the corresponding true proportion regarding such opinion of all persons.

Explain the desirable properties of an estimate. Give examples.

A movie house is filled with 700 people and 60% of these are females, 70% of these people are seated in the no smoking area including 300 females. What is the probability that a person selected at random in the movie house is: (a) a male; (b) a female smoker; (c) a male or a non-smoker and; (d) a smoker if we knew that the person is a male?

 $(5 \times 8 = 40 \text{ marks})$