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FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2017
(CUCBCSS - UG)
Mathematics - Complementary Course

CC15U MAT4 C04 — Mathematics
(2015 Admission)
Time: Three Hours Maximum: 80 Marks

PART A
Answer All Questions. Each question carries 1 mark.
1. State the superposition principle of homogeneous ordinary differential equations.

2. Apply D? + 2D onsin x.

The general solution of Euler Cauchy equation having auxiliary equation with

w

doublerootm=31is .....................
Find L(t™), m > 0.

Define Dirac’s Delta function.

Pl e e it omtoter

What is the period of f(x) = e*

Is f(x) = x|x|,Vx € R, an even or odd function?
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9. Solve U, = u.
10. State whether true or false. If f(x) is odd, | f(x)| and f2(x) are even functions.

11. The upper bound of error estimate for fol x dx using Trapezoidal rule where n = 10

12. Find y; using Picard’s iteration method to the IVP y’ = 2, y(0) = 0.
(12 x 1 = 12 Marks)
PART B

Answer any nine Questions. Each question carries 2 marks.
13. Solve the IVP y" — k2y = 0, (k # 0),y(0) = 1,y'(0) = 1.
14. Using Wronskian, verify the linear independence of x5, x~5.
15. Find a differential equation y" + ay’ + by = 0 with basis e 7%, e 2%,
16. Find L(2t® + cosh4t).
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17. Find L (55-).
18. Define Convolution of f and g. State Convolution theorem for Laplace Transforms.

19. Prove that the sum of two even functions is even.
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. Represent f(x) = x%,0 < x < m by a Fourier sine series.
. Verify that u = % satisfies the Poisson equation.
Define extension of functions and find an extension of f(x) = x?,0 <x < .

Solve using Euler’s method % =1-y,y(0) =0atx =0.2.

Compute fol x2dx by rectangular rule with h = 0.5.

(9 x 2 = 18 Marks)

PART C
Answer any six Questions. Each question carries five marks.
Find the curve y(x) through the origin for which y" = y’ and the tangent at the origin

ISy =x.
Find the general solution of y" +y = 3x2.

Solve (x2D? — 2xD + 2)y = x3cosx by the method of variation of parameters.
Find L (=)

s(s+2)3

Solve the integral equation y(t) = 1 + fot y(z)dz.

Express f(x) = (x —1)%,0 < x < 1 by Fourier cosine series.

Setting u, = p, solve Uy, = Uy.

Using improved Euler’s method, find y(0.2) of the IVPy’ = x +2y, y(0) = 1,
h =0.1.

Estimate folﬂli dx using Simpson’s 1/3 rule.

(6 x 5 = 30 Marks)

PART D
Answer any two Questions. Each question carries 10 marks.
(a) Find a fundamental set of solutions of 2t?y" + 3ty’ —y = 0, t > 0 given that

y,(t) =t~ is a solution.

(b) Solve y" — 2y’ +y = x + e*.

(a) Solve using Laplace transform, the IVP y" — 5y’ + 6y = 6u(t — 1), y(0) = 0,
y'(0) = 0.

(b) Solve using Runge - Kutta method Z—Z =y,y(0) = 1atthepointx = 1.

-1, -1 <x<0

. Find the Fourier series expansion of f(x) = { " BErew
n? 1 1 1
Also deduce that? =St = +

(2 x 10 = 20 Marks)
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