

Answer any nine Questions. Each question carries 2 marks.

- 13. Solve the IVP  $y'' k^2y = 0$ ,  $(k \neq 0)$ , y(0) = 1, y'(0) = 1.
- 14. Using Wronskian, verify the linear independence of  $x^5$ ,  $x^{-5}$ . We will also wise (d)
- 15. Find a differential equation y'' + ay' + by = 0 with basis  $e^{-x}$ ,  $e^{-2x}$ .
- 16. Find  $L(2t^3 + cosh4t)$ .
- 17. Find  $L^{-1}\left(\frac{e^{-3s}}{s^3}\right)$
- 18. Define Convolution of f and g. State Convolution theorem for Laplace Transforms.
- 19. Prove that the sum of two even functions is even.

- 20. Represent  $f(x) = x^2$ ,  $0 \le x \le \pi$  by a Fourier sine series.
- 21. Verify that  $u = \frac{y}{x}$  satisfies the Poisson equation.
- 22. Define extension of functions and find an extension of  $f(x) = x^2, 0 \le x \le \pi$ .
- 23. Solve using Euler's method  $\frac{dy}{dx} = 1 y$ , y(0) = 0 at x = 0.2.
- 24. Compute  $\int_0^1 x^2 dx$  by rectangular rule with h = 0.5.

 $(9 \times 2 = 18 \text{ Marks})$ 

## PART C

Answer any six Questions. Each question carries five marks.

- 25. Find the curve y(x) through the origin for which y'' = y' and the tangent at the origin is y = x. The partial variable and a superfield y(x) is y = x.
- 26. Find the general solution of  $y'' + y = 3x^2$ .
- 27. Solve  $(x^2D^2 2xD + 2)y = x^3\cos x$  by the method of variation of parameters.
- 28. Find  $L^{-1}\left(\frac{1}{s(s+2)^3}\right)$
- 29. Solve the integral equation  $y(t) = 1 + \int_0^t y(\tau) d\tau$ .
- 30. Express  $f(x) = (x-1)^2$ ,  $0 \le x \le 1$  by Fourier cosine series.
- 31. Setting  $u_x = p$ , solve  $u_{xy} = u_x$ .
- 32. Using improved Euler's method, find y(0.2) of the IVP y' = x + 2y, y(0) = 1, h = 0.1.
- 33. Estimate  $\int_0^1 \frac{\sin x}{x} dx$  using Simpson's 1/3 rule.

 $(6 \times 5 = 30 \text{ Marks})$ 

## PART

Answer any two Questions. Each question carries 10 marks.

- 34. (a) Find a fundamental set of solutions of  $2t^2y'' + 3ty' y = 0$ , t > 0 given that  $(x,y)_1(t) = t^{-1}$  is a solution.
  - (b) Solve  $y'' 2y' + y = x + e^x$ .
  - 35. (a) Solve using Laplace transform, the IVP y'' 5y' + 6y = 6u(t-1), y(0) = 0, y'(0) = 0.
    - (b) Solve using Runge Kutta method  $\frac{dy}{dx} = y$ , y(0) = 1 at the point x = 1.
  - 36. Find the Fourier series expansion of  $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$

Also deduce that  $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$ 

(2 x 10 = 20 Marks)

When convolution of and g. Sussessess the Convolution of Laplace Transforms.