(Pages: 3)	Name
	Reg. No

SECOND SEMESTER B. Sc DEGREE EXAMINATION, JUNE 2016

(CUCBCSS – UG)

(Complementary Course: Statistics)

CC15U ST2 C02-Probability Distributions

(2015 Admission)

Time: Three Hours Maximum: 80 Marks

Section A

(One word questions. Answer all questions. Each question carries 1 mark)

Fill up the blanks:

- 1. E|X-A| is minimum when A is
- 2. If Var(X) = 1, then $Var(2X \pm 3) = ...$
- 3. Poisson distribution is a limiting case of binomial distribution under the conditions
- 4. The points of inflexion for a normal curve are
- 5. The p.d.f of Gamma distribution is

Write true or false

- 6. Expected value of a random variable always exists.
- 7. Mean of Poisson distribution is 2 and variance is 5
- 8. If X and Y are two independent normal variates, then X-Y is also a normal variate.
- 9. The mode of a binomial distribution having mean 6 and variance 2 is 6.
- 10. Central limit theorem can be applied only for Poisson distribution.

 $(10 \times 1 = 10 \text{ marks})$

Section B

(One sentence questions. Answer all questions. Equestion carries 2 marks)

- 11. Define mathematical expectation.
- 12. Define characteristic function of a random variable.
- 13. X and Y are independent random variables with means 10 and 20 and variances 2 and 3 respectively. Find the variance of 3X+4Y.
- 14. Define conditional variance.

- 15. Define joint probability density function in discrete and continuous cases.
- 16. Find the m. g. f. of a random variable for which $\mu'_r = r!$
- 17. Define convergence in probability.

 $(7 \times 2 = 14 \text{ marks})$

Section C

(Paragraph questions. Answer any three questions. Each question carries 4 marks)

- 18. If X is a random variable and a and b are constants, then show that E(aX+b) = a E(X)+b
- 19. State and prove addition theorem of expectation.
- 20. A two dimensional random variable (X, Y) has the joint density

$$f(x, y) = \begin{cases} kx^2y \\ 0 \text{ elsewhere} \end{cases}, 0 < x, y < 1$$

find (1) the constant k (ii) P $\{0 < X < \frac{3}{4}, \frac{1}{2} < Y < 1\}$

- 21. State and prove the reproductive property of the Poisson distribution.
- 22. X is normally distributed with mean 12 and standard deviation 4. Find the probability that (i) $0 \le X \le 12$; (ii) $X \ge 20$.

 $(3 \times 4 = 12 \text{marks})$

Section D

(Short Essay questions. Answer any four questions. Each question carries 6 marks)

23. Find the mean and variance if the distribution function of the random variable X is

$$F(x) = \begin{cases} 0 & \text{if } x < -1\\ \frac{1+x}{2} & \text{if } -1 \le x < 1\\ 1 & \text{if } x \ge 1 \end{cases}$$

- 24. Define central and raw moments. Derive an expression for the r^{th} central moment in terms of the raw moments.
- 25. Two random variables X and Y have the joint density:

$$f(x,y) = \begin{cases} 8xy, 0 < x < y < 1 \\ 0 & elsewhere \end{cases}$$

Find (i) E(Y/X = x), (ii) Var (Y/X = x).

- 26. If X is a random variable with a continuous distribution function F, then prove that F(X) has a uniform distribution on [0, 1].
- 27. Derive the recurrence relation for the central moments of binomial distribution.
- 28. State and prove the Bernoulli's law of large numbers.

 $(4\times6=24 \text{ marks})$

Section E

(Essay questions. Answer any two questions. Each question carries 10 marks)

29. Let X and Y have the joint probability mass function given by

$$p(x, y) = \begin{cases} \frac{3}{16} & \text{for } (x, y) = (-1, 0), (-1, 1), (1, 0), (2, 1) \\ \frac{1}{16} & \text{for } (x, y) = (1, 2), (0, 3), (-1, 2), (1, 3) \end{cases}$$

Find the correlation coefficient between X and Y.

30. The random variables X and Y have the joint distribution given by the p.d.f. :

$$f(x, y) = \begin{cases} 6(1 - x - y), & for \ x > 0, y > 0, x + y < 1\\ 0 & else \ where. \end{cases}$$

Find the marginal distributions of X and Y. Hence examine if X and Y are independent.

- 31. The mean I.Q (intelligence quotient) of a large number of children of age 14 was 100 and the standard deviation 16. Assuming that the distribution of I.Q was normal, find
 - (i) What percentage of the children had I.Q. under 80?
 - (ii) Between what limits the I.Q's of the middle 40% of the children lay?
 - (iii) What percentage of the children had I.Q's within the range $\mu \pm 1.96$?
- 32. State and prove Chebyshev's inequality.

 $(2 \times 10 = 20 \text{ marks})$
