C 8	0048 (Pages : 2) Name
	Reg. No
S	IXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2015
	(UG-CCSS)
	Core Course
	Chemistry
	CH6 B17—PHYSICAL CHEMISTRY—III
Time :	Three Hours Maximum: 30 Weightage
	Section A
	Answer all questions. Each question carries ¼ weightage.
Till in	the blanks:
1.	The molecularity of the reaction $A + B + C \rightarrow D$ is
2.	The number of photons passing through unit distance in unit time is called ————.
3.	Hittorff's method is used to determine ———— of ions.
4.	According to Lowry Bronsted theory acid is a ————.
	Answer in a word or a sentence:
5.	The rate constant of a reaction is 0.154 min ⁻¹ . Find the order of the reaction.
6.	Write the equation for Lambert's law.
7.	Define cell constant.
8.	Write an example for a Lewis acid.
9.	Define pH of a solution.
10.	Give one example for a redox indicator.
11.	Calculate the hydrogen ion concentration of a solution having pH 4.
12.	What is steady-state approximation?
	$(12 \times \frac{1}{4} = 3 \text{ weightage})$
	Section B
	Answer all questions. Each question carries 1 weightage.
13.	Distinguish between photochemical and thermochemical reactions.

15. The specific conductance of a 0.01 M solution of KCl is 1.4×10^{-3} ohm⁻¹ cm⁻¹ at 298 K. Calculate

14. Define photosensitisation.

its equivalent conductance.

Turn over

- 16. What is Wein effect?
- 17. What is meant by levelling effect of a solvent?
- 18. Write Henderson equation and explain the terms.
- 19. Write the cell reaction for the cell Zn, Zn²⁺ // Fe²⁺, Fe.
- 20. Calculate the potential of an electrode consisting of Zn metal in $\rm ZnSo_4$ solution. $\rm [Zn^{2+}]=0$. $\rm E_0=-0.76~V$.
- 21. What do you mean by conditional statement in C program language?

 $(9 \times 1 = 9 \text{ weigh})$

Section C

Answer any five questions.

Each question carries 2 weightage.

- 22. Explain the adsorption theory of catalysis.
- 23. The rate constant of a second order reaction is $5.70 \times 10^{-5} \, dm^3 \, mol^{-1} \, s^{-1}$ at 25°C and $1.66 \times dm^3 \, mol^{-1} \, s^{-1}$ at 40°C. Calculate the activation energy and Arrhenius pre-exponential factor
- 24. With the help of Jablonsky diagram explain phosphorescence and fluorescence.
- 25. State and explain Kohlrausch's taw.
- 26. How does a solution of weak acid and its salt with strong base act as a buffer?
- 27. What is dropping mercury electrode? Write the advantages and limitations of DME in polarogra
- 28. Write the algorithm for finding out molecular mass of an organic compound containing only can and hydrogen in C program.

 $(5 \times 2 = 10 \text{ weight})$

Section D

Answer any **two** questions. Each question carries 4 weightage.

- 29. Write the electrochemical theory of corrosion.
- 30. Derive the rate equation for bimolecular reaction using collision theory.
- 31. (a) Give an account of Debye-Huckel theory of strong electrolytes?
 - (b) Write the theory and advantages of conductometric titrations.

 $(2 \times 4 = 8 \text{ weights})$