8	0	n	3	4
~	v	v	U	

Nam	e	 		
		4	U	******
Rog	NIC			

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2015

(U.G.-CCSS)

Core Course-Physics

PH 6B 17—SOLID STATE PHYSICS, SPECTROSCOPY AND LASER PHYSICS

me: Three Hours

Maximum: 30 Weightage

Section I

Answer all questions.

Each question carries 1/4 weightage.

1.	Solids	that have no periodic str	acture are called	: ever neithernise weer
	(a)	Amorphous.	(b)	Liquid crystals.
	(c)	Simple cubic.	(d)	None of the above.

- 2. An example of a hexagonal system is:
 - (a) NaCl.
 (b) CuSO₄.
 (c) Quartz.
 (d) NiSO₄.
- 3. Planes with equal intercepts on a and b axes and parallel to c axes are designated by :
 - (a) [0 0 1]. (b) [0 1 0]. (c) [0 1 1]. (d) [1 1 0].
- 4. Bragg's reflection can occur only for wavelength:
 - (a) $\lambda \le 2d$. (b) $\lambda \ge 2d$.
 - (c) $\lambda \ge \frac{d}{\sqrt{2}}$. (d) $\lambda \le \frac{d}{\sqrt{2}}$.
- 5. SQUIDS are used to defect:
 - (a) Radiation from human body.
 - (b) Small magnetic fields in a human brain.
 - (c) Small electric fields in a human brain.
 - (d) Heart beat.
- 6. Molecular absorption takes place:
 - (a) At a single frequency.(b) Over a spread of frequencies.(c) At a discrete energy level.(d) None of the above.

7.	When all the three principal moments of inertia of a molecule are equal, it is called?				
	(a) Symmetric top.	(b)	Linear molecule.		
	(c) Spherical top.	(d)	Asymmetric top.		
8.	Raman lines are strongly —	oleyd G - seu	(6) (4)		
9.	. The method of producing population inversion is called ————.				
10.	0. At the lowest vibrational level, the vibrational energy is:				
	(a) Continuous.	(b)	Infinity.		
	(c) Zero.	(d)	Non zero.		
11.	11. The three dimensional high speed photography method developed using lasers is called —				
12.	In Born oppenheimer approximati	ion, we conside	er that a diatomic molecule can execute:		
	(a) Rotations alone.				

 $(12 \times \frac{1}{4} = 3 \text{ weight})$

Section II

Answer all questions.

Each question carries 1 weightage.

13. What is a unit cell?

(b)

(c)

14. Explain Bravais lattice in two dimensions.

Vibrations alone.

None of the above.

Rotations and Vibrations independently.

- 15. Copper has an fcc structure with lattice constant $\alpha = 3.61 \text{Å}$. Calculate the radius of the copatom.
- 16. What is a body centered cubic crystal?
- 17. How can super conductivity be destroyed?
- 18. What is centrifugal distortion?
- 19. What is Raman resonance spectroscopy?
- 20. Give the principle of working of a maser.
- 21. Why don't homonuclear diatomic molecules show vibrational spectra?

 $(9 \times 1 = 9 \text{ weight})$

Section III

Answer any five questions.

Each question carries 2 weightage.

22. What is miller indices? Explain the rules to find the miller indices of a plane.

- 23. What do you understand by space lattice? Enumerate the crystal systems.
- 24. Distinguish between type I and type II superconductors.
- 25. The moment of inertia of the Co molecule is 1.46×10^{-46} kg-m². Calculate the energy in eV.
- 26. Explain the effect of anharmonicity on the vibrational spectra of diatomic molecules.
- 27. The lines in the pure rotational 341 Mu spectrum of HCl are spaced at 20.8×10^3 per metre. Calculate the moment of inertia and internuclear distance. Mass of chlorine = 58.5×10^{-27} kg and mass of proton = 1.67×10^{-27} kg.
- 28. What are Einstein's coefficients? Give the relation between them.

 $(5 \times 2 = 10 \text{ weightage})$

Section IV

Answer any two questions.

Each question carries 4 weightage.

- 29. What is Raman effect? Explain theoretically the observed characteristics of the Raman spectra of a diatomic molecule. Bring out the similarity in infra red and Raman spectra.
- 30. What is super conductivity? Explain Meissner effect of superconductivity. Give two important applications of superconductivity. The critical temperature of a superconductor when no magnetic field is present is T_c . Find the temperature at which the critical field becomes half its value of OK.
- 31. Derive expressions for the energy and frequency of diatomic molecule. Show the vibrational energy levels graphically.

 $(2 \times 4 = 8 \text{ weightage})$