(Pages: 4)

Name.....

Reg. No.

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2017

(CUCBCSS—UG)

Mathematics

MAT 6B 14 (E 02)—LINEAR PROGRAMMING

Time: Three Hours

Maximum: 80 Marks

Section A

Answer all the twelve questions. Each question carries 1 mark.

- 1. Define convex hull of a set.
- 2. Examine whether the set $S = \{(x_1, x_2) : 5x_1 + 2x_2 \ge 10, 2x_1 + 5x_2 \ge 10\}$ is convex.
- 3. State graphical solution algorithm for an LPP involving two variables.
- 4. Define slack and surplus variables.
- 5. Reduce the following LPP to its standard form:

Maximize $Z = x_1 - 3x_2$

subject to the constraints:

$$-x_1 + 2x_2 \le 15$$

$$x_1 + 3x_2 = 10$$

 x_1 and x_2 unrestricted in sign.

- 6. When does the simplex method indicate that the LPP has unbounded solution?
- 7. Write the dual of the following LPP:

$$\text{Maximize Z} = 3x_1 - x_2 + x_3$$

subject to the constraints: $4x_1 - x_2 \le 8$

$$8x_1 + x_2 + 3x_3 \ge 12$$

$$5x_1 - 6x_3 \le 13$$

$$x_1, x_2, x_3 \ge 0.$$

8. State Minimax theorem.

- 9. What is transportation problem?
- 10. State the necessary condition for the existence of feasible solution to the transportation problem.
- 11. Give the mathematical formulation of the assignment problem.
- 12. What is an unbalanced transportation problem?

 $(12 \times 1 = 12 \text{ marks})$

Section B

Answer any **nine** out of twelve questions. Each question carries 2 marks.

- 13. Formulate the following problem as a Linear Programming Problem: A person requires 10, 12 and 12 units of chemicals A, B and C respectively for his garden. A liquid product contains 5, 2 and 1 units of A, B and C respectively per jar. A dry product contains 1, 2 and 4 units of A, B and C respectively per carton. If the liquid product is sold for Rs. 3 per jar and the dry product is sold for Rs. 2 per carton, how many units of each product should be purchased, in order to minimize the cost and meet requirements.
- 14. Prove that a hyperplane in \mathbb{R}^n is a convex set.
- 15. Obtain graphically the maximum value of $z = \{\min (3x_1 10), \min (-5x_1 + 5)\}$ such that $0 \le x_1 \le 5$.
- 16. Write the characteristics of standard form of Linear Programming Problem.
- 17. The column vector (1, 1, 1) is a feasible solution to the system of equations: $x_1 + x_2 + 2x_3 = 4$ and $2x_1 - x_2 + x_3 = 2$. Reduce the given feasible solution to a basic feasible solution.
- 18. Verify Minimax theorem for the function $f(x) = \{9, 7, 5, 3, 1\}$.
- 19. State the general rules for converting any primal LPP into its dual.
- 20. Write all the steps for Vogel's Approximation method of solving a transportation problem.
- 21. Prove that every loop in a transportation table has an even number of cells.
- 22. How to solve the degeneracy in transportation problems?
- 23. Write steps for solving assignment problem by Hungarian method.
- 24. State the difference between transportation problem and assignment problem.

 $(9 \times 2 = 18 \text{ marks})$

Section C

Answer any six out of nine questions. Each question carries 5 marks.

- 25. Show that set of all convex combinations of a finite number of vectors $x_1, x_2, \dots x_k$ in \mathbb{R}^n is a convex set.
- 26. Use graphical method to solve the LPP:

Maximize
$$Z = 6x_1 + 11x_2$$

subject to the constraints,

$$2x_1 + x_2 \le 104$$

$$x_1 + 2x_2 \le 76$$

$$x_1, x_2 \ge 0$$

27. Show that the following system of linear equations has a degenerate solution : —

$$2x_1 + x_2 - x_3 = 2$$
 and $3x_1 + 2x_2 + x_3 = 3$.

28. Use simplex method to solve the LPP:

Maximize
$$Z = 3x_1 + 2x_2$$

subject to the constraints

$$4x_1 + 3x_2 \le 12$$

$$4x_1 + x_2 \le 8$$

$$4x_1 - x_2 \le 8$$
 and $x_1, x_2 \ge 0$.

- 29. Explain the Charne's Big-M method.
- 30. Prove that dual of the dual is primal.
- 31. Determine an initial basic feasible solution to the following transportation problem using the row minima method.

	D ₁	D ₂	D ₃	Supply
01	50	30	220	1
02	90	45	170	4
03	250	200	50	4
Required	4	2	3	9

32. Prove that there always exist an optimal solution to a balanced transportation problem.

Turn over

33. The owner of a small machine shop has four machinists available to do jobs for the day. Five jobs are offered with expected profit for each machinist on each job as follows:

Jobs		Machinist	8	
	1	2	3	4
A	32	41	57	18
В	48	54	62	34
C	20	31	81	57
D.	71	43	41	47
E	52	29	51	50

Find, by using assignment method, the assignment of machinists to jobs that will result in a maximum profit.

 $(6 \times 5 = 30 \text{ marks})$

Section D

Answer any two out of three questions.

Each question carries 10 marks.

- 34. Let $A \subseteq \mathbb{R}^n$ be any set. Prove that A >, the convex hull of A, is the set of all finite convex combination of vectors in A.
- 35. Use Simplex method to solve the LPP:

Minimize
$$Z = x_2 - 3x_3 + 2x_5$$

subject to the constraints

$$3x_2 - x_3 + 2x_5 \le 7$$
$$-2x_2 + 4x_3 \le 12$$

$$-4x_2+3x_3+8x_5\leq 10 \text{ and } x_2,x_3,x_5\geq 0.$$

36. Obtain an optimum basic feasible solution to the following degenerate transportation problem:

	D ₁	D ₂	D_3	Availability
01	7	3	4	2
02	2	1	3	3
03	3	4	6	5
Demand	4	1	5	10

 $(2 \times 10 = 20 \text{ marks})$